Теорема Вика (в квантовой электродинамике)

Теорема Вика утверждает, что среднее по вакууму от любого числа бозонных операторов равно сумме произведений всех возможных попарных средних этих операторов. При этом в каждой паре множители должны стоять в той же последовательности, что и в исходном произведении. Для фермионных операторов каждый член суммы входит со знаком плюс или минус в зависимости от того, чётно или нечётно число перестановок, необходимое для того, чтобы поставить рядом все усредняемые операторы[3].

Таким образом, хронологическое произведение операторов равно нормальному произведению, плюс сумма нормальных произведений с одним удвоением, где пара должна быть выбрана всеми возможными способами, плюс сумма нормальных произведений с двумя удвоениями, где две пары удвоения должны быть выбраны всеми возможными способами и т. д. Для того, чтобы преобразовать хронологическое произведение в нормальное, надо все операторы рождения переставить с операторами уничтожения, стоящими перед ними. При этом получается формула указанного выше вида. В неё будут входить удвоения только тех операторов, у которых порядок в хронологическом произведении отличается от порядка в нормальном произведении. Так как удвоения операторов, для которых оба порядка равносильны, равны нулю, можно считать, что в правой части формулы входят нормальные произведения со всеми возможными удвоениями.[4]