Суперсимметрия

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от , проверенной 23 июня 2021; проверки требует .

Суперсимме́трия, или симме́трия Фе́рми — Бо́зе, — гипотетическая симметрия, связывающая бозоны и фермионы в природе[1]. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие (или в излучение), и наоборот.

Суперсимметрия предполагает удвоение (как минимум) числа известных элементарных частиц за счёт наличия . Для фотона — фотино, кварка — скварк, хиггса — хиггсино, W-бозонви́но, глюонглюино и так далее. Суперпартнёры должны иметь значение спина, на полуцелое число отличающееся от значения спина у исходной частицы[2][3].

По состоянию на 2019 год является физической гипотезой, не подтверждённой экспериментально. Совершенно точно установлено, что наш мир не является суперсимметричным в смысле точной симметрии, так как в любой суперсимметричной модели фермионы и бозоны, связанные суперсимметричным преобразованием, должны обладать одинаковыми массой, зарядом и другими квантовыми числами (за исключением спина). Данное требование не выполняется для известных в природе частиц. Предполагается, тем не менее, что существует энергетический лимит, за пределами которого поля подчиняются суперсимметричным преобразованиям, а в рамках лимита — нет. В таком случае частицы-суперпартнёры обычных частиц оказываются очень тяжёлыми по сравнению с обычными частицами[4].

Поиск суперпартнёров обычных частиц — одна из основных задач современной физики высоких энергий[4]. Ожидается, что Большой адронный коллайдер[5] сможет открыть и исследовать суперсимметричные частицы, если они существуют, или поставить под большое сомнение суперсимметричные гипотезы, если ничего не будет обнаружено.

Впервые суперсимметрию предложили в 1973 году австрийский физик Юлиус Весс и итальянский физик Бруно Зумино для описания ядерных частиц[6][7]. Математический аппарат теории был открыт ещё раньше, в 1971—1972 годах, советскими физиками Юрием Гольфандом и Евгением Лихтманом[8] из ФИАН, а также Дмитрием Волковым и Владимиром Акуловым[9][10][11] из ХФТИ. Суперсимметрия впервые возникла в контексте версии теории струн, которую предложили Пьер Рамон, Джон Шварц и Андре Невё, однако алгебра суперсимметрии позднее стала успешно использоваться и в других областях физики.

Основная физическая модель современной физики высоких энергий — Стандартная модель — не является суперсимметричной, но может быть расширена до суперсимметричной теории. Минимальное суперсимметричное расширение Стандартной модели называется «минимальная суперсимметричная Стандартная модель» (MSSM). В MSSM необходимо добавить дополнительные поля так, чтобы построить суперсимметричный мультиплет с каждым полем Стандартной модели. Для материальных фермионных полей — кварков и лептонов — нужно ввести скалярные поля — скварки и слептоны, по два поля на каждое поле Стандартной модели. Для векторных бозонных полей — глюонов, фотонов, W- и Z-бозонов — вводятся фермионные поля глюино, фотино, зино и ви́но, также по два на каждую степень свободы Стандартной модели. Для нарушения электрослабой симметрии в MSSM нужно ввести 2 хиггсовских дуплета (в обычной Стандартной модели вводится один хиггсовский дуплет), то есть в MSSM возникает 5 хиггсовских степеней свободы — заряженный бозон Хиггса (2 степени свободы), лёгкий и тяжёлый скалярный бозон Хиггса и псевдоскалярный бозон Хиггса.

В любой реалистической суперсимметричной теории должен присутствовать сектор, нарушающий суперсимметрию. Наиболее естественным нарушением суперсимметрии является введение в модель так называемых мягких нарушающих членов. В настоящее время рассматриваются несколько вариантов нарушения суперсимметрии.

Первый вариант MSSM предложили в 1981 году американские физики Говард Джорджи и Савас Димопулос.

Теории, включающие суперсимметрию, дают возможность решить несколько проблем, присущих Стандартной модели:

Независимо от существования суперсимметрии в природе, математический аппарат суперсимметричных теорий оказывается полезным в самых различных областях физики. В частности, суперсимметричная квантовая механика позволяет находить точные решения весьма нетривиальных уравнений Шрёдингера. Суперсимметрия оказывается полезной в некоторых задачах статистической физики (например, суперсимметричная сигма-модель).

Суперсимметричная квантовая механика отличается от квантовой механики тем, что включает супералгебру SUSY, в противоположность квантовой теории поля. Суперсимметричная квантовая механика часто становится актуальной при изучении динамики суперсимметричных солитонов, и из-за упрощенного характера полей, которые зависят от времени (а не пространства-времени), в этом подходе достигнут большой прогресс, и эта теория теперь изучается самостоятельно.

Квантовая механика SUSY рассматривает пары гамильтонианов, которые находятся в определённом математическом отношении, которые называются гамильтонианами-партнерами. А соответствующие члены потенциальной энергии, входящие в гамильтонианы, тогда известны как потенциалы-партнеры. Основная теорема показывает, что для каждого собственного состоянияодного гамильтониана, его гамильтониан-партнер имеет соответствующее собственное состояние с той же энергией. Этот факт можно использовать для вывода многих свойств спектра собственных значений. Это аналогично новому описанию SUSY, которое относилось к бозонам и фермионам. Можно представить «бозонный гамильтониан», собственными состояниями которого являются различные бозоны нашей теории. А SUSY-партнер этого гамильтониана будет «фермионным», а его собственными состояниями будут фермионы теории. У каждого бозона будет фермионный партнер с равной энергией.

Концепции SUSY оказалась полезной для некоторых применений квазиклассических приближений. Кроме того, SUSY применяется к системам с усредненным беспорядком, как квантовым, так и неквантовым (посредством статистической механики), уравнение Фоккера — Планка — это пример неквантовой теории. «Суперсимметрия» во всех этих системах возникает из-за того, что моделируется одна частица, и поэтому «статистика» не имеет значения. Использование метода суперсимметрии обеспечивает математически строгую альтернативу методу реплик, но только в невзаимодействующих системах, который пытается решить так называемую «проблему знаменателя» при усреднении по беспорядку. Подробнее о приложениях суперсимметрии в физике конденсированного состояния см. Ефетов (1997)[15].

В 2011 году на Большом адронном коллайдере (БАК) была проведена серия экспериментов, в ходе которых проверялись фундаментальные выводы теории Суперсимметрии, а также верность описания ею физического мира. Как заявила 27 августа 2011 года профессор Ливерпульского университета Тара Ширс[en], эксперименты не подтвердили основные положения теории[16][17]. При этом Тара Шиарс уточнила, что не нашла подтверждения и упрощённая версия теории суперсимметрии, однако полученные результаты не опровергают более сложный вариант теории.

К концу 2012 года на детекторе LHCb Большого адронного коллайдера была накоплена статистика по распаду странного B-мезона на два мюона[18]. Предварительные результаты совпали с прогнозом Стандартной модели: (3,66 ± 0,23)⋅10-9, тогда как её суперсимметричное расширение прогнозирует более высокую вероятность распада. Весной 2015 года коллаборации LHCb и CMS объединили свои данные по распаду странного B-мезона на мюон-антимюонную пару и получили вероятность распада 2,8+0,7
−0,6
⋅10-9 с уровнем статистической значимости 6,2 σ. Таким образом, вероятность этого крайне редкого события статистически достоверна и хорошо согласуется с предсказанием Стандартной модели.[19].

Результаты проверки электрического дипольного момента электрона (2013) также не подтвердили варианты суперсимметричных теорий[20].

Тем не менее суперсимметричные теории могут быть подтверждены другими экспериментами, в частности, наблюдениями за распадом нейтрального B0-мезона.[21]. После перезапуска весной 2015 года, БАК планирует начать работу на мощности 13 ТэВ и продолжит поиск отклонений от статистических предсказаний Стандартной модели.[22][23].

Отсутствие экспериментальных данных подтверждающих теорию суперсимметрии привело к появлению критиков данной теории даже среди бывших энтузиастов суперсимметрии. Так теоретик Михаил Шифман ещё в октябре 2012 опубликовал критическую статью[24]. В статье он прямо написал, что теория суперсимметрии бесперспективна, что от неё надо отказаться ради новых идей и ради нового поколения физиков-теоретиков (чтобы они не стали потерянным поколением).