Старая квантовая теория

Ста́рая ква́нтовая тео́рия (иногда ста́рая ква́нтовая меха́ника[1]) — подход к описанию атомных явлений, который был развит в 1900—1924 годах и предшествовал созданию квантовой механики. Характерная черта этой теории — одновременное использование классической механики и некоторых предположений, вступавших в противоречие с ней. Основа старой квантовой теории — модель атома Бора, к которой позднее Арнольд Зоммерфельд[2] добавил квантование z-компоненты углового момента, неудачно названное пространственным квантованием. Квантование z-компоненты дало возможность ввести эллиптические электронные орбиты и предложить концепцию энергетического вырождения. Успех старой квантовой теории состоял в корректном описании атома водорода и нормального эффекта Зеемана.

Основной инструмент старой квантовой теории — квантование Бора — Зоммерфельда, процедура, которая формирует некоторый дискретный набор состояний интегрированного движения классической системы и определяет их как разрешённые состояния этой системы аналогично разрешённым орбитам в модели Бора. Система может находиться только в этих состояниях и ни в каких других. Эта теория не может описывать хаотическое движение, поскольку требует полной замкнутости траекторий движения классической системы.

Точкой отсчёта старой квантовой теории (и квантовой механики вообще) считается появление в самом начале XX века работ Макса Планка по излучению и поглощению света[3][4]. Непосредственная разработка квантовой теории началась с внедрением Эйнштейном квантовой теории теплоёмкости твёрдого тела. В модели Эйнштейна считается, что каждый атом в решётке является независимым квантованным гармоническим осциллятором, что даёт возможность объяснить наряду с классическим законом Дюлонга — Пти при высоких температурах падение теплоёмкости при низких. При помощи такого приёма квантовые принципы были распространены на движение атомов. Позже Дебай усовершенствовал эту модель[источник не указан 1990 дней].

В 1913 году Нильс Бор использовал соображения, которые он вскоре сформулировал как принцип соответствия, и разработал модель атома водорода, которая могла объяснить его дискретный спектр, сформулировав два известных постулата. Позже Арнольд Зоммерфельд развил идеи Бора, распространив его модель на произвольные интегрируемые системы, используя принцип адиабатической инвариантности квантовых чисел. Модель Зоммерфельда была существенно ближе к современной квантовой механике, чем модель Бора[источник не указан 1990 дней].

На протяжении 1910-х и в начале 1920-х годов с помощью старой квантовой теории было успешно решено множество задач. Стала понятной природа колебательных и вращательных спектров молекул, открыт спин электрона, благодаря чему было объяснено существование полуцелых квантовых чисел. Планк ввёл нулевые колебания, Зоммерфельд успешно применил модель Бора к релятивистскому атому водорода, а Хендрик Крамерс объяснил эффект Штарка. Бозе и Эйнштейн предложили квантовую статистику для фотонов[источник не указан 1990 дней].

Крамерс предложил метод расчёта вероятностей перехода между квантовыми состояниями с использованием фурье-компонент движения, который позже был развит им вместе с Вернером Гейзенбергом в матричное полуклассическое отображение вероятностей перехода. Потом на основе этих идей Гейзенберг построил матричную механику — формулировку квантовой механики на основе матриц перехода[источник не указан 1990 дней].

В 1924 году Луи де Бройль разработал волновую теорию материи, которую немного позже развил Эйнштейн, выведя полуклассическое уравнение для волн материи. В 1925 году Эрвин Шрёдингер предложил квантовомеханическое волновое уравнение, которое дало возможность собрать воедино все результаты старой квантовой теории без каких-либо неувязок. Волновая механика Шрёдингера развивалась независимо от матричной механики Гейзенберга, но в экспериментах было видно, что оба метода предсказывают одинаковые результаты. Поль Дирак в 1926 году показал, что обе картины эквивалентны и вытекают из более общего метода — теории представлений[uk][5].

Появление матричной и волновой механики ознаменовало конец старой квантовой теории[источник не указан 1990 дней].

Основная идея старой квантовой теории состояла в том, что движение атомной системы — квантованное (дискретное). Система подчиняется законам классической механики за единственным исключением: не все движения системы разрешены, а только те, которые соответствуют правилу

Одна из главных задач физики конца XIX века — проблема излучения абсолютно чёрного тела. Абсолютно чёрное тело — это физическая идеализация: тело, которое полностью поглощает падающее излучение любых длин волн. Реальные же вещества чёрного цвета, например, сажа, поглощают 99% падающего излучения в видимом диапазоне длин волн, однако инфракрасное излучение поглощается ими значительно хуже. Среди тел Солнечной системы абсолютно чёрному телу лучше всего соответствует Солнце.

Согласно классической термодинамике спектральная интенсивность I(ν) излучения должна быть одинаковой для любых абсолютно чёрных тел, нагретых до одинаковой температуры. Такое предсказание подтверждается экспериментом. Спектральная интенсивность достигает максимума при некоторой частоте νmax, а по обе стороны от максимума падает до нуля. Частота максимума νmax, как и его высота, увеличивается с температурой.

Попытки теоретически предсказать форму экспериментальной кривой спектральной интенсивности абсолютно чёрного тела на основе законов классической физики привели к формуле Рэлея — Джинса[6][7]:

Кроме области малых частот, закон формулы Рэлея — Джинса не согласуется с экспериментом. Он предсказывает, что полная интенсивность излучаемой энергии бесконечно растёт с частотой (ультрафиолетовая катастрофа), но в действительности полная интенсивность конечна.

В 1900 году Макс Планк постулировал[4], что обмен энергией между атомами и испущенным ими электромагнитным излучением происходит дискретными порциями энергии, а наименьшая порция энергии при заданной частоте ν равна

где h — постоянная Планка. При этом при взаимодействии атомов и излучения могут передаваться только целые кратные порции энергии . Используя этот постулат, Планк вывел формулу для спектральной интенсивности теплового равновесного электромагнитного излучения абсолютно чёрного тела:

что прекрасно согласуется с экспериментом. Таким образом, Планк решил проблему излучения абсолютно чёрного тела, используя противоречащую классической физике идею о квантовании энергии.

Фотоэффект — явление эмиссии веществом электронов под действием света (и, вообще говоря, любого электромагнитного излучения). Первые систематические исследования фотоэффекта выполнены русским физиком Столетовым в 1888 году, который установил несколько важных закономерностей. Ключевым моментом оказался тот факт, что энергия фотоэлектронов абсолютно не зависит от интенсивности падающего света: повышение интенсивности увеличивает лишь число выбиваемых электронов, но не их скорость. Однако оказалось, что скорость электронов зависит от частоты излучения, причём с увеличением частоты энергия фотоэлектронов растёт линейно. Такие явления были непонятны с позиции классической электродинамики.

Теоретическое объяснение фотоэффекта дал Альберт Эйнштейн в 1905 году. Используя гипотезу Планка, он предположил, что свет не только излучается порциями (квантами), но и вообще представляет собой поток квантов (фотонов) с энергией . При фотоэффекте часть падающего света отражается от поверхности, а другая часть проникает внутрь поверхностного слоя металла и поглощается там. Когда электрон поглощает фотон, он получает от него энергию и, затрачивая часть её на работу выхода Aout, покидает металл. Таким образом, имеем уравнение Эйнштейна для фотоэффекта:

где P — энергия ионизации (которую для металлов можно положить нулю, поскольку металл имеет большое количество свободных электронов), eV — кинетическая энергия фотоэлектрона. Это уравнение было вскоре интенсивно проверено в экспериментах Роберта Милликена, за которые в том числе он получил Нобелевскую премию по физике 1923 года.

Таким образом, явление фотоэффекта является экспериментальным подтверждением гипотезы Планка и наличия у света корпускулярных свойств.

Эксперимент по неупругому рассеянию электронов на атомах, поставленный в 1913—1914 годах Джеймсом Франком и Густавом Людвигом Герцом[8], подтвердил справедливость постулатов Бора.

В этом опыте атомы или молекулы более-менее разреженного газа бомбардируются медленными электронами. При этом исследуется распределение скоростей электронов до и после столкновений. Если столкновения упругие, то распределение скоростей не меняется; и наоборот, при неупругих столкновениях часть электронов теряет свою энергию, отдавая её атомам, с которыми они сталкивались, поэтому распределение скоростей меняется.

Гармонический осциллятор — простейшая система старой квантовой теории. Запишем гамильтониан:

Энергетические уровни системы определяются орбитами движения, а орбиты отбираются согласно следующему квантовому правилу: площадь в фазовом пространстве, которую покрывает каждая орбита, должна быть целой. Отсюда следует, что энергия квантуется по правилу Планка:

Термодинамические величины для квантованного гармонического осциллятора можно определить с помощью усреднения энергии в каждом из дискретных состояний:

Это противоречие между классической механикой и теплоёмкостью холодных тел заметил в XIX веке Максвелл; устранение этого противоречия было сложной задачей для тех, кто отстаивал атомарную теорию материи. Альберт Эйнштейн решил эту проблему в 1906 году, предложив идею квантования атомарного движения и сформулировав модель Эйнштейна — первое применение квантовой теории к механическим системам. Немного позже Петер Дебай развил более точную количественную теорию теплоёмкости твёрдых тел на основе квантованных гармонических осцилляторов с разными частотами (модель Дебая).

При любой энергии E можно легко найти импульс p при помощи закона сохранения энергии:

Это выражение интегрируется по всем значениям q между классическими точками поворота, где импульс равен нулю.

Простейший случай — частица в прямоугольной потенциальной яме длиной L, для которой условие квантования выглядит следующим образом:

Интегрируя правую часть уравнения для импульса, можно найти энергетические уровни:

Рассмотрим другой потенциал — линейный, который соответствует постоянной силе F. Квантовомеханическая формулировка этой задачи довольно сложна, и, в отличие от рассмотренных выше случаев, полуклассический результат не является точным, а лишь стремится к таковому при увеличении значений квантовых чисел. Имеем:

Полуклассический результат этой задачи совпадает с квантовомеханическим в случае вычисления энергии основного состояния. Условие квантования будет иметь вид:

Ротатор состоит из тела массы M, которое закреплено на безмассовом жёстком стержне длиной R, и описывается следующим двумерным лагранжианом:

Старая квантовая теория требует, чтобы угловой момент был квантованным:

В модели Бора такого условия квантования, которое накладывается на круговые орбиты, достаточно для определения энергетического спектра.

Трёхмерный жёсткий ротатор описывается двумя углами θ и φ сферической системы координат относительно произвольно выбранной оси Oz. Опять в лагранжиан входит только кинетическая энергия:

что равно z-компоненте углового момента. Далее из условия квантования следует, что после интегрирования по углу φ от 0 до :

где m — так называемое магнитное квантовое число. Название происходит из-за того, что z-компонента углового момента равна магнитному моменту ротатора вдоль оси Oz (очевидно, если частица, находящаяся на конце ротатора, заряжена).

Полный угловой момент трёхмерного ротатора квантован аналогично двумерному. Два условия квантования определяют произвольные значения полного углового момента и его z-компоненты с помощью квантовых чисел l, m. Эти условия присутствуют и в квантовой механике, но во времена господства старой квантовой теории было непонятно, как может быть квантованной ориентация углового момента относительно произвольно выбранной оси Oz. Казалось, что отсюда должно было бы следовать существование некоторого выделенного направления в пространстве.

Это явление получило название пространственного квантования, но оно казалось несовместимым с изотропностью пространства. В квантовой механике угловой момент квантуется таким же образом, но его дискретные состояния вдоль одной оси являются суперпозицией состояний вдоль других осей, поэтому в процессе квантования не возникает какого-либо выделенного направления в пространстве. Поэтому сейчас термин «пространственное квантование» не употребляется, а вместо него используют термин «квантование углового момента».

Угловая часть атома водорода — это ротатор, который характеризуется квантовыми числами l, m. Остаётся неизвестной только радиальная координата, которая задаётся одномерным периодическим движением.

При фиксированном значении полного углового момента L функция Гамильтона классической задачи Кеплера имеет вид (здесь переменные выбраны таким образом, чтобы масса и энергия стали безразмерными):

Фиксируя энергию как (отрицательную) константу и решая полученное уравнение относительно импульса p, имеем условие квантования:

что определяет новое квантовое число k, которое в совокупности с числом l определяет энергетические уровни:

Легко видеть, что энергия зависит от суммы квантовых чисел k и l, которую можно обозначить как ещё одно квантовое число n, которое называется главным квантовым числом. Если k неотрицательное, то разрешённые значения числа l при заданном n не могут быть больше заданного значения n.

Эта полуклассическая модель атома водорода имеет название модели Зоммерфельда, а орбитами электрона в ней являются эллипсы. Модель Зоммерфельда предсказывала тот факт, что магнитный момент атома, который измеряется вдоль некоторой оси, будет иметь только дискретные значения. Этот результат, казалось, противоречил изотропности пространства, но был подтверждён опытом Штерна — Герлаха. Теория Бора — Зоммерфельда являлась одним из самых важных этапов развития квантовой механики, поскольку описывала возможность расщепления энергетических уровней атома в магнитном поле, то есть объясняла эффект Зеемана.

Релятивистское решение для энергетических уровней атома был найден Арнольдом Зоммерфельдом[2]. Запишем релятивистское уравнение для энергии с электростатическим потенциалом:

В 1905 году Эйнштейн заметил, что энтропия электромагнитного поля в ящике, которое по Планку изображается квантованными гармоническими осцилляторами, для случая коротких волн равна энтропии газа точечных частиц в таком же самом ящике, причём количество частиц равно количеству квантов. Поэтому Эйнштейн пришёл к выводу, что квант можно интерпретировать как локализованную частицу[11], частицу света — фотон.

В 1924 году Луи де Бройль выдвинул гипотезу о том, что вещество, в частности электрон, аналогично фотону, описывается волной, которая удовлетворяет следующему соотношению:

определяет смену фазы волны, когда она проходит вдоль классической орбиты. Поэтому для конструктивной интерференции число длин волн, которое помещается на классической орбите, должно быть целым. Такое условие объясняет факт, что орбиты должны быть квантованными: волны материи образуют стоячие волны только при некоторых дискретных частотах и энергиях.

Например, для частицы, помещённой в ящик, стоячая волна должна вмещать целое число длин волны между стенками ящика. Тогда условие квантования имеет вид:

Эйнштейн развил эту гипотезу дальше и придал ей математически более строгую форму, заметив, что фазовую функцию для волн в механической системе следует отождествить с решением уравнения Гамильтона — Якоби. Позже на основе этих идей Шрёдингер предложил своё квантовомеханическое уравнение, заложив тем самым основы волновой механики.

Старая квантовая теория была сформулирована только для некоторого класса механических систем. Например, она не работала с поглощением и эмиссией излучения. Но Хендрик Крамерс попытался найти правила, по которым можно рассчитывать поглощение и излучение[12][13][14].

Позже эти идеи были развиты Гейзенбергом, Борном и Йорданом[15][16][17], что привело к появлению матричной механики.

Старая квантовая теория и, в частности, модель Бора являлись важным шагом в развитии теории строения атома. В начале XX века, когда применение квантовых гипотез было скорее искусством, чем наукой, успехи старой квантовой теории производили глубокое впечатление. Она показала неприменимость классической физики к внутриатомным явлениям и большое значение квантовых законов на микроскопическом уровне. Но старая квантовая теория является всего лишь переходным этапом к созданию последовательной теории атомных явлений, поскольку в её рамках можно решать только ограниченный круг задач. Основными причинами кризиса старой квантовой теории, который привёл к необходимости построения новой квантовой механики, были[18]:

Позже стало понятным, что старая квантовая теория фактически является квазиклассическим приближением уравнения Шрёдингера[19].