Специальная теория относительности

Специа́льная тео́рия относи́тельности (СТО; также ча́стная тео́рия относи́тельности) — теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света (в рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей). Фактически СТО описывает геометрию четырёхмерного пространства-времени и основана на плоском (то есть неискривлённом) пространстве Минковского. Обобщение СТО для гравитационных полей называется общей теорией относительности.

Основным отличием СТО от классической механики является зависимость (наблюдаемых) пространственных и временных характеристик от скорости. Описываемые специальной теорией относительности отклонения в протекании физических процессов от предсказаний классической механики называют релятивистскими эффектами, а скорости, при которых такие эффекты становятся существенными, — релятивистскими скоростями.

Центральное место в специальной теории относительности занимают преобразования Лоренца, позволяющие преобразовывать пространственно-временные координаты событий при переходе от одной инерциальной системы отсчёта к другой, когда одна из них движется относительно другой с определенной скоростью.

Специальная теория относительности была создана Альбертом Эйнштейном в работе 1905 года «К электродинамике движущихся тел». Математический аппарат преобразований координат и времени между различными системами отсчёта (с целью сохранения уравнений электромагнитного поля) был ранее сформулирован французским математиком А. Пуанкаре (который и предложил их назвать «преобразованиями Лоренца»: сам Лоренц вывел до этого только приближённые формулы[К. 1]). А. Пуанкаре также первым показал, что эти преобразования можно геометрически представить как повороты в четырёхмерном пространстве-времени (опередив Г. Минковского), и показал, что преобразования Лоренца образуют группу (см. ).

Непосредственно термин «теория относительности» был предложен М. Планком. В дальнейшем, после разработки А. Эйнштейном теории гравитации — общей теории относительности — к первоначальной теории начал применяться термин «специальная» или «частная» теория относительности (от нем. Spezielle Relativitätstheorie).

Предпосылкой к созданию теории относительности явилось развитие в XIX веке электродинамики[1]. Результатом обобщения и теоретического осмысления экспериментальных фактов и закономерностей в областях электричества и магнетизма стали уравнения Максвелла, описывающие свойства электромагнитного поля и его взаимодействие с зарядами и токами. В электродинамике Максвелла скорость распространения электромагнитных волн в вакууме не зависит от скоростей движения как источника этих волн, так и наблюдателя, и равна скорости света. Таким образом, уравнения Максвелла оказались неинвариантными относительно преобразований Галилея, что противоречило классической механике.

Специальная теория относительности была разработана в начале XX века усилиями Г. А. Лоренца, А. Пуанкаре, А. Эйнштейна и других учёных [2] (см. История теории относительности). Экспериментальной основой для создания СТО послужил опыт Майкельсона. Результаты оказались неожиданными для классической физики того времени: скорость света не зависит от направления (изотропность) и орбитального движения Земли вокруг Солнца. Попытка интерпретировать полученные данные вылилась в пересмотр классических представлений и привела к созданию специальной теории относительности.

При движении со скоростями, всё более приближающимися к скорости света, отклонение от законов классической динамики становится всё более существенным. Второй закон Ньютона, связывающий силу и ускорение, должен быть модифицирован в соответствии с принципами СТО. Также импульс и кинетическая энергия тела сложнее зависят от скорости, чем в нерелятивистском случае.

Специальная теория относительности получила многочисленные подтверждения на опыте и является верной теорией в своей области применимости[3] (см. Экспериментальные основания СТО). По меткому замечанию Л. Пэйджа, «в наш век электричества вращающийся якорь каждого генератора и каждого электромотора неустанно провозглашает справедливость теории относительности — нужно лишь уметь слушать»[4].

Специальная теория относительности, как и любая другая физическая теория, может быть сформулирована на базе из основных понятий и постулатов (аксиом) и правил соответствия её физическим объектам.

Система отсчёта представляет собой некоторое материальное тело, выбираемое в качестве начала этой системы, способ определения положения объектов относительно начала системы отсчёта и способ измерения времени. Обычно различают системы отсчёта и системы координат. Добавление процедуры измерения времени к системе координат «превращает» её в систему отсчёта.

Инерциальная система отсчёта (ИСО) — такая система, относительно которой объект, не подверженный внешним воздействиям, движется равномерно и прямолинейно. Постулируется, что ИСО существуют, и любая система отсчёта, движущаяся относительно данной инерциальной системы равномерно и прямолинейно, также является ИСО.

Событием называется любой физический процесс, который может быть локализован в пространстве, и имеющий при этом очень малую длительность. Другими словами, событие полностью характеризуется координатами (x, y, z) и моментом времени t. Примерами событий являются: вспышка света, положение материальной точки в данный момент времени и т. п.

Обычно рассматриваются две инерциальные системы S и S'. Время и координаты некоторого события, измеренные в системе S, обозначаются как (t, x, y, z), а координаты и время этого же события, измеренные в системе S', как (t', x', y', z'). Удобно считать, что координатные оси систем параллельны друг другу, и система S' движется вдоль оси x системы S со скоростью v. Одной из задач СТО является поиск соотношений, связывающих (t', x', y', z') и (t, x, y, z), которые называются преобразованиями Лоренца.

В СТО постулируется возможность определения единого времени в рамках данной инерциальной системы отсчёта процедурой синхронизации двух часов, находящихся в произвольных точках ИСО[5].

Предполагается, что такая процедура в данной инерциальной системе отсчёта может быть проведена для любых двух часов, так что справедливо свойство транзитивности: если часы A синхронизированы с часами B, а часы B синхронизированы с часами C, то часы A и C также окажутся синхронизированными.

В отличие от классической механики, единое время можно ввести только в рамках данной системы отсчёта. В СТО не предполагается, что время является общим для различных систем. В этом состоит основное отличие аксиоматики СТО от классической механики, в которой постулируется существование единого (абсолютного) времени для всех систем отсчёта.

Чтобы измерения, выполненные в различных ИСО, можно было между собой сравнивать, необходимо провести согласование единиц измерения между системами отсчёта. Так, единицы длины могут быть согласованы при помощи сравнения эталонов длины в перпендикулярном направлении к относительному движению инерциальных систем отсчёта[6]. Например, это может быть кратчайшее расстояние между траекториями двух частиц, движущихся параллельно осям x и x' и имеющих различные, но постоянные координаты (y, z) и (y',z'). Для согласования единиц измерения времени можно использовать идентично устроенные часы, например, атомные.

В первую очередь в СТО, как и в классической механике, предполагается, что пространство и время однородны, а пространство также изотропно[7]. Если быть более точным (современный подход), инерциальные системы отсчёта собственно и определяются как такие системы отсчёта, в которых пространство однородно и изотропно, а время однородно. По сути существование таких систем отсчёта постулируется.

Постулат 1 (принцип относительности Эйнштейна). Законы природы одинаковы во всех системах координат, движущихся прямолинейно и равномерно друг относительно друга[8]. Это означает, что форма зависимости физических законов от пространственно-временных координат должна быть одинаковой во всех ИСО, то есть законы инвариантны относительно переходов между ИСО. Принцип относительности устанавливает равноправие всех ИСО.

Учитывая второй закон Ньютона (или уравнения Эйлера-Лагранжа в лагранжевой механике), можно утверждать, что если скорость некоторого тела в данной ИСО постоянна (ускорение равно нулю), то она должна быть постоянна и во всех остальных ИСО. Иногда это и принимают за определение инерциальных систем отсчёта.

Формально, принцип относительности Эйнштейна распространяет классический принцип относительности (Галилея) с механических на все физические явления. Однако, если учесть, что во времена Галилея физика заключалась собственно в механике, то и классический принцип тоже можно было считать распространяющимся на все физические явления. В том числе он должен распространяться и на электромагнитные явления, описываемые уравнениями Максвелла, которые выведены из эмпирически выявленных закономерностей. Однако, согласно последним, скорость распространения света является определённой величиной, не зависящей от скорости источника (по крайней мере в одной системе отсчёта). Из принципа относительности следует, что она не должна зависеть от скорости источника во всех ИСО в силу их равноправности. А значит, она должна быть постоянной во всех ИСО. В этом заключается суть второго постулата:

Постулат 2 (принцип постоянства скорости света). Скорость света в вакууме одинакова во всех системах координат, движущихся прямолинейно и равномерно друг относительно друга[8].

Принцип постоянства скорости света противоречит классической механике, а конкретно — закону сложения скоростей. При выводе последнего используется только принцип относительности Галилея и неявное допущение одинаковости времени во всех ИСО. Таким образом, из справедливости второго постулата следует, что время должно быть относительным — неодинаковым в разных ИСО. Необходимым образом отсюда следует и то, что «расстояния» также должны быть относительны. В самом деле, если свет проходит расстояние между двумя точками за некоторое время, а в другой системе — за другое время и притом с той же скоростью, то отсюда следует, что и расстояние в этой системе должно отличаться.

Также используется постулат причинности: любое событие может оказывать влияние только на события, происходящие позже него, и не может оказывать влияние на события, произошедшие раньше него[10][11][12]. Из постулата причинности и независимости скорости света от выбора системы отсчёта следует, что скорость любого сигнала не может превышать скорость света[13][14][12].

Тем не менее, попытки аксиоматизации, в том числе без второго постулата, предпринимались позднее и другими исследователями. Существуют также аксиоматики, которые не используют принцип относительности — а только принцип постоянства скорости света. Более подробно с ними можно ознакомиться в статье А. К. Гуца[18].

Общий вид преобразований Лоренца в векторном виде[19], когда скорость систем отсчёта имеет произвольное направление:

Подобный предельный переход является отражением принципа соответствия, согласно которому более общая теория (СТО) имеет своим предельным случаем менее общую теорию (в данном случае — классическую механику).

Существует множество способов вывода преобразований Лоренца. Рассмотрим один из вариантов.

В силу однородности пространства и времени, изотропности пространства и принципа относительности преобразования от одной ИСО к другой должны быть линейными[20][21]. Линейность преобразований можно также вывести, предполагая, что [22], (при этом необходимо использовать также слабые предположения о дифференцируемости и взаимной однозначности функций преобразования). Если использовать только «определение» ИСО: , то можно показать только, что преобразования между двумя ИСО должны быть дробно-линейными функциями координат и времени с одинаковым знаменателем[16][23].

если два объекта имеют одинаковые скорости относительно одной ИСО, то их скорости будут равны и в любой другой ИСОесли некоторое тело имеет постоянную скорость относительно одной инерциальной системы отсчёта, то его скорость будет постоянна и относительно любой другой ИСО

В силу изотропности пространства, смена координатных осей в противоположную сторону не должна влиять на вид зависимости между координатами в разных системах.

Интервалом между произвольными событиями называется квадратный корень следующей величины:

Непосредственной подстановкой преобразований Лоренца можно убедиться, что интервал оказывается одинаковым во всех ИСО. Этот факт, однако, можно показать и без использования полученных преобразований Лоренца, а используя только постулаты СТО[26] (включая однородность и изотропность пространства и однородность времени).

Про события, интервал между которыми времениподобен или светоподобен, всегда можно сказать, что одно событие произошло до другого (то есть эти события можно упорядочить во времени, и их последовательность будет одинаковой в любой ИСО). Эти события могут быть связаны причинно-следственными связями.

Перечисленные свойства можно вывести из преобразований Лоренца, если записать их в виде:

Знак интервала, вообще говоря, можно выбрать произвольно. В первоначальной версии интервал записывался с обратным знаком (то есть пространственные координаты со знаком «+», а временная — «−»). В современной литературе чаще используют вышеприведённую формулу.

Сами преобразования Лоренца можно получить из их линейности и требования инвариантности интервала.

Тогда интервал выглядит как обычное евклидово расстояние между точками в четырёхмерном пространстве. Как было показано, интервал должен сохраняться при переходе между ИСО, следовательно, это могут быть либо параллельные переносы и инверсии (что не интересно), либо повороты в этом пространстве. Преобразования Лоренца играют роль поворотов в таком пространстве. Вращения базиса в четырёхмерном пространстве-времени, смешивающие временную и пространственные координаты 4-векторов, выглядят как переход в движущуюся систему отсчёта и похожи на вращения в обычном трёхмерном пространстве. При этом естественно изменяются проекции четырёхмерных интервалов между определёнными событиями на временную и пространственные оси системы отсчёта, что и порождает релятивистские эффекты изменения временных и пространственных интервалов. Именно инвариантная структура этого пространства, задаваемая постулатами СТО, не меняется при переходе от одной инерциальной системы отсчёта к другой. Используя только две пространственные координаты (x, y), четырёхмерное пространство можно изобразить в координатах (t, x, y). События, связанные с событием начала координат (t=0, x=y=0) световым сигналом (светоподобный интервал), лежат на так называемом световом конусе (см. рисунок справа).

В первоначальной версии Минковского (с мнимым временем) формулы преобразований Лоренца выводятся довольно просто — они следуют из известных формул поворотов в евклидовом пространстве.

Геометрический подход Минковского и Пуанкаре был развит в 1914 году А. Роббом, который положил в основу аксиоматического построения СТО понятие о следовании событий. Данный подход был в дальнейшем развит А. Д. Александровым в работах 50-х—70-х годов. Базовая аксиоматика предполагает[18], что пространство-время является, во-первых, четырёхмерным связным односвязным локально-компактным хаусдорфовым топологическим пространством с определённой на нём группой параллельных переносов (формально — транзитивной коммутативной группой гомеоморфизмов пространства на себя). Это означает, что оно является аффинным пространством с этой группой переносов. Во-вторых — и это самый принципиальный момент — каждой точке пространства-времени сопоставлены подмножества (содержащие, кроме этой точки, также и другие) так называемые «области воздействия» (или следования, последующих событий) точки — такие, что для любой другой точки области воздействия её область воздействия входит в область воздействия данной точки. Данное предположение вводит отношение частичного порядка в пространстве времени — отношение следования или причинности. Данное отношение позволяет ввести понятие ограниченного множества (в смысле этого отношения порядка). Формально-математическим аналогом второго постулата СТО (ограниченности скорости передачи воздействия) в данном случае будет предположение об ограниченности пересечения «последующего» множества данной точки и «предшествующего» множества любой «последующей» точки. Эти предположения являются базовыми. Тем не менее, этих предположений оказывается недостаточно для получения преобразований Лоренца. Приходится делать дополнительные предположения о существовании группы взаимно-однозначных отображений, обладающих определёнными свойствами по отношению к «областям воздействия». Вместе с этими дополнительными аксиомами указанная группа отображений фактически является группой Лоренца и тем самым могут быть введены декартовы координаты, псевдометрика и собственно явный вид преобразований Лоренца.

Геометрическая интерпретация пространства-времени позволяет формулировать СТО в ковариантной форме (см. ниже) на основе тензорного анализа. Именно геометрическая интерпретация является основой для обобщения теории относительности (общая теория относительности).

Возможен ещё один подход, в котором постулируется геометрическая структура пространства скоростей. Каждая точка такого пространства соответствует некоторой инерциальной системе отсчёта, а расстояние между двумя точками — модулю относительной скорости между ИСО. В силу принципа относительности все точки такого пространства должны быть равноправными, а, следовательно, пространство скоростей является однородным и изотропным. Если его свойства задаются римановой геометрией, то существует три и только три возможности: плоское пространство, пространство постоянной положительной и отрицательной кривизны. Первый случай соответствует классическому правилу сложения скоростей. Пространство постоянной отрицательной кривизны (пространство Лобачевского) соответствует релятивистскому правилу сложения скоростей и специальной теории относительности.

где суммируются интервалы времени в локально инерциальных системах отсчёта.

Продольное сокращение размеров называют лоренцевым сокращением. Яркий пример — парадокс шеста и сарая, где длинный шест в полёте за счёт укорочения длины помещается в более короткий сарай.

При визуальном наблюдении движущихся тел дополнительно к лоренцевому сокращению необходимо учитывать время распространения светового сигнала от поверхности тела. В результате быстро движущееся тело выглядит наклонённым, а не сжатым в направлении движения.

Аналога поперечного эффекта в классической физике нет, и это чисто релятивистский эффект. В отличие от этого, продольный эффект Доплера обусловлен как классической составляющей, так и релятивистским эффектом замедления времени.

В классической механике законы движения можно вывести из вида лагранжиана механической системы на основе принципа наименьшего действия. Действие должно быть инвариантом относительно преобразований ИСО. Таким свойством обладает интервал. Следовательно, общий вид действия в релятивистской механике

На основе этого лагранжиана можно вывести динамику релятивистской частицы, исходя из классических определений понятий через лагранжиан и уравнений Эйлера-Лагранжа.

Аналогично преобразованиям Лоренца для времени и координат релятивистские энергия и импульс, измеренные относительно различных инерциальных систем отсчёта, связаны аналогичными соотношениями:

остаётся справедливым также и в теории относительности. Однако производная по времени берётся от релятивистского импульса, а не от классического. Это приводит к тому, что связь силы и ускорения существенно отличается от классической:

Первое слагаемое содержит «релятивистскую массу», равную отношению силы к ускорению, если сила действует перпендикулярно скорости. В ранних работах по теории относительности её называли «поперечной массой». Именно её «рост» наблюдается в экспериментах по отклонению электронов магнитным полем. Второе слагаемое содержит «продольную массу», равную отношению силы к ускорению, если сила действует параллельно скорости:

Скорость изменения энергии равна скалярному произведению силы на скорость тела:

Это приводит к тому, что, как и в классической механике, составляющая силы, перпендикулярная к скорости частицы, не изменяет её энергию (например, магнитная составляющая в силе Лоренца).

При помощи метрического тензора можно ввести т. н. ковекторы, которые обозначаются той же буквой, но с нижним индексом:

Свёртка вектора и ковектора является инвариантом — имеет одинаковое значение во всех инерциальных системах отсчёта:

Для 4-координат — инвариантом является интервал, для 4-скорости — квадрат скорости света, для 4-импульса (энергии-импульса) — это величина, пропорциональная квадрату массы (покоя):

Теория относительности является логически непротиворечивой теорией. Это означает, что из её исходных положений нельзя логически вывести некоторое утверждение одновременно с его отрицанием. Поэтому множество так называемых парадоксов (подобных парадоксу близнецов) являются кажущимися. Они возникают в результате некорректного применения теории к тем или иным задачам, а не в силу логической противоречивости СТО.

Справедливость теории относительности, как и любой другой физической теории, в конечном счёте, проверяется эмпирически[28][29]. Экспериментальную проверку теории относительности существенно облегчает логическая эквивалентность двух постулатов СТО требованию лоренц-инвариантности физических законов в одной системе отсчёта[28].

Всё это не означает, что СТО не имеет пределов применимости. Напротив, как и в любой другой теории, они существуют, и их выявление является важной задачей экспериментальной физики. Например, в теории гравитации Эйнштейна (ОТО) рассматривается обобщение псевдоевклидового пространства СТО на случай пространства-времени, обладающего кривизной, что позволяет объяснить большую часть астрофизических и космологических наблюдаемых данных. Существуют попытки обнаружить анизотропию пространства и другие эффекты, которые могут изменить соотношения СТО[31]. Однако необходимо понимать, что если они будут обнаружены, то приведут к более общим теориям, предельным случаем которых снова будет СТО. Точно так же при малых скоростях верной остаётся классическая механика, являющаяся частным случаем теории относительности. Вообще, в силу принципа соответствия, теория, получившая многочисленные экспериментальные подтверждения, не может оказаться неверной, хотя область её применимости может быть ограничена.

Ниже приведены только некоторые эксперименты, иллюстрирующие справедливость СТО и её отдельных положений.

Измерение величины замедления времени проводилось также с макроскопическими объектами. Например, в эксперименте Хафеле — Китинга проводилось сравнение показаний неподвижных атомных часов и атомных часов, летавших на самолёте. Эффект релятивистского замедления времени учитывается в бортовых часах спутниковых навигационных систем (GPS-Navstar, «ГЛОНАСС», «Бэйдоу», «Галилео» и т. д.), поэтому корректная работа таких систем является его экспериментальным подтверждением.

Астрофизические наблюдения являются убедительным опровержением подобной идеи. Например, при наблюдении двойных звёзд, вращающихся относительно общего центра масс, в соответствии с теорией Ритца происходили бы эффекты, которые на самом деле не наблюдаются (аргумент де Ситтера). Действительно, скорость света («изображения») от звезды, приближающейся к Земле, была бы выше скорости света от удаляющейся при вращении звезды. При большом расстоянии от двойной системы более быстрое «изображение» существенно обогнало бы более медленное. В результате видимое движение двойных звёзд выглядело бы достаточно странным, что не наблюдается.

Однако, если бы это было так, возникала бы существенная разница в изображении двойных звёзд в различных диапазонах спектра, так как эффект «увлечения» средой света существенно зависит от его частоты[34].

В опытах Томашека (1923 г.) при помощи интерферометра сравнивались интерференционные картины от земных и внеземных источников (Солнце, Луна, Юпитер, звёзды Сириус и Арктур). Все эти объекты имели различную скорость относительно Земли, однако смещения интерференционных полос, ожидаемых в модели Ритца, обнаружено не было. Эти эксперименты в дальнейшем неоднократно повторялись. Например, в эксперименте Бонч-Бруевича А. М. и Молчанова В. А. (1956 г.) измерялась скорость света от различных краёв вращающегося Солнца. Результаты этих экспериментов также противоречат гипотезе Ритца[35].

Независимость скорости света от скорости источника регистрируется и в наземных экспериментах. Например, проводилось измерение скорости пары фотонов, возникающих при аннигиляции электрона и позитрона, центр масс которых двигался со скоростью, равной половине скорости света. С экспериментальной точностью 10 % сложение скорости света и скорости источника обнаружено не было[36][37][38].

Следует также заметить, что специальная теория относительности перестаёт работать в масштабах всей Вселенной, требуя замены на ОТО.

Теория относительности входит в существенное противоречие с некоторыми аспектами классической механики. Например, парадокс Эренфеста показывает несовместимость СТО с понятием абсолютно твёрдого тела. Надо отметить, что даже в классической физике предполагается: механическое воздействие на твёрдое тело распространяется со скоростью звука, а отнюдь не с бесконечной (как должно быть в воображаемой абсолютно твёрдой среде).

Специальная теория относительности (в отличие от общей) полностью совместима с квантовой механикой. Их синтезом является релятивистская квантовая теория поля. Однако обе теории вполне независимы друг от друга. Возможно построение как квантовой механики, основанной на нерелятивистском принципе относительности Галилея (см. уравнение Шрёдингера), так и теорий на основе СТО, полностью игнорирующих квантовые эффекты. Например, квантовая теория поля может быть сформулирована как нерелятивистская теория[39]. В то же время такое квантовомеханическое явление, как спин, последовательно не может быть описано без привлечения теории относительности (см. Уравнение Дирака).

Развитие квантовой теории всё ещё продолжается, и многие физики считают, что будущая теория всего ответит на все вопросы, имеющие физический смысл, и даст в пределах как СТО в сочетании с квантовой теорией поля, так и ОТО. Скорее всего, СТО ожидает такая же судьба, как и механику Ньютона — будут точно очерчены пределы её применимости. В то же время такая максимально общая теория пока является отдалённой перспективой.