Сила Лоренца

Говорится, что электромагнитная сила, действующая на заряд q представляет собой комбинацию силы, действующей в направлении электрического поля E пропорциональной величине поля и количеству заряда, и силы, действующей под прямым углом к магнитному полю B и скорости v, пропорциональная величине магнитного поля, заряду и скорости. Вариации этой базовой формулы описывают магнитную силу действующую на проводник с током (иногда называемую ), электродвижущую силу в проволочной петле, движущейся через область с магнитным полем (закон индукции Фарадея), и силу, действующую на движущиеся заряженные частицы.

Историки науки предполагают, что этот закон подразумевался в статье Джеймса Клерка Максвелла, опубликованной в 1865 году[3] Хендрик Лоренц привёл полный вывод этой формулы в 1895 г.[4] определив вклад электрической силы через несколько лет после того, как Оливер Хевисайд правильно определил вклад магнитной силы.[5][6]

Для силы Лоренца, так же как и для сил инерции, третий закон Ньютона не выполняется. Лишь переформулировав этот закон Ньютона как закон сохранения импульса в замкнутой системе из частиц и электромагнитного поля, можно восстановить его справедливость для сил Лоренца[7].

Во многих учебниках по электромагнетизму силу Лоренца используют в качестве определения электрического и магнитного полей E и B.[8][9][10] В частности, сила Лоренца понимается как следующее эмпирическое утверждение:

Это выражение верно даже для частиц, приближающихся к скорости света (то есть величина v = | v | ≈ c).[11] Таким образом, два векторных поля E и B определяются во всем пространстве и времени, и они называются «электрическим полем» и «магнитным полем». Поля определены повсюду в пространстве и времени относительно силы, которую испытывает пробный заряд, помещённый в электромагнитное поле.

Как определение E и B, сила Лоренца является только определением в принципе, потому что реальная частица (в отличие от гипотетического «пробного заряда» бесконечно малой массы и заряда) будет генерировать свои собственные конечные поля E и B, которые изменит электромагнитную силу, которую он испытывает. Вдобавок, если заряд испытывает ускорение, как если бы его заставляли двигаться по кривой траектории, он испускает излучение и теряет кинетическую энергию. Смотрите например, тормозное излучение и синхротронный излучение. Эти эффекты возникают как за счет прямого воздействия (так называемой силы реакции излучения), так и косвенного (путем воздействия на движение близлежащих зарядов и токов).

Сила F, действующая на частицу с электрическим зарядом q и мгновенной скоростью v из-за внешнего электрического поля E и магнитного поля B, определяется выражением (в единицах СИ):[12]

где знак × обозначает векторное произведение (все величины, выделенные жирным шрифтом, являются векторами). В декартовых компонентах

В общем случае, электрическое и магнитное поля зависят от координат и времени. Следовательно, в явном виде силу Лоренца можно записать как

где r — вектор положения заряженной частицы, t — время, а точка обозначает производная по времени.

Положительно заряженная частица будет ускоряться в том же направлении, что и поле E, но её траектория будет изгибаться перпендикулярно как вектору мгновенной скорости v, так и полю B в соответствии с правилом буравчика (подробно, если пальцы правой руки вытянуты так, чтобы указывать в направлении v, а затем изгибаются так, чтобы указывать в направлении B, тогда вытянутый большой палец будет указывать в направлении F).

Член q E называется электрической силой, а член q (v × B) — магнитной силой .[13] Согласно некоторым определениям, термин «сила Лоренца» относится конкретно к формуле для магнитной силы[14] а формуле с общей электромагнитной силой (включая электрическую силу), дано другое название. В дальнейшем термин «сила Лоренца» будет относиться к выражению для полной силы.

Магнитная составляющая силы Лоренца проявляется как сила, действующая на проводник с током помещённый в магнитном поле. В этом контексте эта сила также называется .

Сила Лоренца — это сила, которую оказывает электромагнитное поле на заряженную частицу, или. другими словами, скорость, с которой передается линейный импульс от электромагнитного поля частице. С ним связана мощность, которая представляет собой скорость, с которой энергия передается от электромагнитного поля частице. Эта мощность

Магнитное поле не совершает работы, потому что магнитная сила всегда перпендикулярна скорости частицы.

Для непрерывного распределения заряда находящегося в движении уравнение для силы Лоренца принимает дифференциальный вид:

так что непрерывным аналогом уравнения для силы Лоренца является выражение[15]

К полной силе можно прийти вычислив объемный интеграл по распределению заряда:

Плотность мощности, связанная с силой Лоренца в материальной среде, равна

Если разделить полный заряд и полный ток на их свободную и связанную части, получится, что плотность силы Лоренца равная

В приведенных выше формулах используются единицы СИ, которые являются наиболее распространенными среди экспериментаторов, техников и инженеров. В системе СГС, которая более распространена среди физиков-теоретиков, сила Лоренца примет вид

где c — скорость света . Хотя это уравнение выглядит несколько иначе, оно полностью эквивалентно, поскольку новые виличины связаны в двух системах единиц соотнишениями

где ε 0 — диэлектрическая проницаемость вакуума, а μ 0 — магнитная проницаемость вакуума. На практике индексы «cgs» и «SI» всегда опускаются, и система единиц измерения должна быть понятна из контекста.

Направление движения частицы в зависимости от её заряда при векторе магнитной индукции, перпендикулярном вектору скорости (к нам из плоскости рисунка, перпендикулярно ей)
La théorie electromagnétique de Maxwell et son application aux corps mouvants

Первые попытки количественного описания электромагнитной силы были предприняты в середине 18 века. Предполагалось Иоганн Тобиас Майер и другие в 1760 году[16] предполагали, что сила на магнитных полюсах как и электрически заряженные объекты, что установил Генри Кавендиш в 1762 году[17], подчиняются закону обратных квадратов. Однако в обоих случаях экспериментальное доказательство не было ни полным, ни окончательным. Только в 1784 году Шарль-Огюстен де Кулон, используя торсионные весы, смог окончательно экспериментально показать, что это правда.[18] Вскоре после открытия в 1820 году Гансом Кристианом Орстедом того факта, что на магнитную стрелку действует электрический ток, Андре-Мари Ампер в том же году смог экспериментально получить формулу угловой зависимости силы между двумя элементами тока.[19][20] Во всех этих описаниях сила всегда описывалась в терминах свойств вещества и расстояний между двумя массами или зарядами, а не в терминах электрических и магнитных полей.[21]

Современная концепция электрических и магнитных полей впервые возникла в теориях Майкла Фарадея, особенно удачной оказалась его идея силовых линий, которая позже получила полное математическое описание лордом Кельвином и Джеймсом Клерком Максвеллом.[22] С современной точки зрения, в формулировке Максвелла 1865 г. его уравнений для электромагнитного поля можно получить уравнение для силы Лоренца по отношению к электрическим токам[3], хотя во времена Максвелла не было очевидно, как его уравнения связаны с силами при перемещении заряженных предметов. Дж. Дж. Томсон был первым, кто попытался вывести из уравнений Максвелла поля электромагнитные силы, действующие на движущийся заряженный объект, в терминах свойств объекта и внешних полей. Заинтересовавшийся поведением заряженных частиц в катодных лучах, Томсон опубликовал статью в 1881 году, в которой он дал определение силы, действующей на частицы, обусловленную внешним магнитным полем, в виде[5]

Томсон вывел правильную основную форму формулы, но из-за некоторых ошибок и неполного описания тока смещения перед формулой включил неверный масштабный коэффициент, равный половине. Оливер Хевисайд изобрел современные векторные обозначения и переписал в их терминах полевые уравнения Максвелла; он также (в 1885 и 1889 годах) исправил ошибки вывода Томсона и пришел к правильному виду для магнитной силы действующей на движущуюся заряженную частицу.[5][22][23] Наконец, в 1895 году[4][24] Хендрик Лоренц пришёл к современному виду формулы для электромагнитной силы, которая включает вклады как электрического, так и магнитного полей. Лоренц вначале отказался от максвелловского описания эфира и проводимости. Вместо этого Лоренц указал на различия между материей и светоносным эфиром и записал уравнения Максвелла в микроскопическом масштабе. Используя версию уравнений Максвелла Хевисайда для неподвижного эфира и, применяя лагранжевую механику (см. Ниже), Лоренц пришел к правильной и полной форме закона для электромагнитной силы, который теперь носит его имя.[22][25]

Заряженная частица дрейфует в однородном магнитном поле. (A) Нет возмущающей силы (B) В электрическом поле, E (C) С независимой силой, F (например, гравитация) (D) В неоднородном магнитном поле, grad H

Во многих случаях, представляющих практический интерес, движение в магнитном поле электрически заряженной частицы (например, электрона или иона в плазме) можно рассматривать как суперпозицию относительно быстрого кругового движения вокруг точки, которая дрейфует в направлении перпендикулярном электрическому и магнитным полям. Скорости дрейфа могут различаться в зависимости от их зарядового состояния, массы или температуры, что может привести к электрическим токам или химическому разделению.

В то время как современные уравнения Максвелла описывают то, как электрически заряженные частицы и токи или движущиеся заряженные частицы вызывают электрические и магнитные поля, сила Лоренца дополняет эту картину, описывая силу, действующую на движущийся точечный заряд q в присутствии электромагнитных полей.[12][26] Хотя сила Лоренца описывает действие E и B на точечный заряд, но такие электромагнитные силы не являются всей картиной. Заряженные частицы, возможно, связаны с другими силами, особенно с гравитацией и ядерными силами. Таким образом, уравнения Максвелла не отделены от других физических законов, а связаны с ними через плотности заряда и тока. Реакция точечного заряда на закон Лоренца — это один из аспектов; генерация E и B токами и зарядами — другое.

В реальных материалах сила Лоренца неадекватно описывает коллективное поведение заряженных частиц как в принципе, так и с точки зрения вычислений. Заряженные частицы в материальной среде не только реагируют на поля E и B, но и создают эти поля сами. Для определения временной и пространственной реакции зарядов необходимо решать сложные уравнения переноса, например, уравнение Больцмана, уравнение Фоккера — Планка или уравнения Навье — Стокса . Например, см. Магнитогидродинамику, гидродинамику, электрогидродинамику, сверхпроводимость, звездную эволюцию . Разработан целый физический аппарат для решения этих вопросов. См., Например, формулы Грина — Кубо и функцию Грина (теория многих тел) .

Когда провод, по которому течёт электрический ток, помещается в магнитное поле, каждый из движущихся зарядов, составляющих ток, испытывает силу Лоренца, и вместе они могут создавать макроскопическую силу действующую на проводе (иногда называемую силой Лапласа). Комбинируя приведенный выше закон Лоренца с определением электрического тока, в случае прямого неподвижного провода получается следующее уравнение:[27]

где  — вектор, величина которого равна длине провода, а направление — вдоль провода, совмещенное с направлением обычного тока I.

Если провод не прямой, а изогнутый, то силу, действующую на него, вычисляют, применив данную формулу к каждому бесконечно малому отрезку провода d, а затем сложив все эти силы путем интегрирования . Формально результирующая сила, действующая на неподвижный жесткий провод, по которому течет постоянный ток I равна

Это полная сила. Кроме того, обычно возникает крутящий момент и другие эффекты, если проволока не совсем жесткая.

Одним из применений этого является закон силы Ампера, который описывает, как два токоведущих провода притягиваться или отталкиваться друг от друга, в зависимости от направления тока, поскольку каждый из них испытывает силу Лоренца от магнитного поля создаваемого другим током.

Магнитная сила (qv × B) в выражении силы Лоренца отвечает за двигательную электродвижущую силу (или двигательную ЭДС), явление, лежащее в основе действия многих электрических генераторов. Когда проводник перемещается через область магнитного поля, магнитное поле оказывает противоположно направленные силы на электроны и ядра в проводе, и это создает ЭДС. Термин «двигательная ЭДС» применяется к этому явлению, поскольку ЭДС возникает из-за движения провода.

В других электрических генераторах магниты движутся, а проводники — нет. В этом случае ЭДС возникает из-за электрической силы (q E) в уравнении для силы Лоренца. Рассматриваемое электрическое поле создается изменяющимся магнитным полем, приводящим к возникновению индуцированной ЭДС, как описано уравнением Максвелла — Фарадея.[28]

Обе эти ЭДС, несмотря на их явно различное происхождение, описываются одним и тем же уравнением, а именно ЭДС — это скорость изменения магнитного потока через провод. Это закон электромагнитной индукции Фарадея, см. . Специальная теория относительности Эйнштейна была частично мотивирована желанием лучше понять эту связь между двумя эффектами.[28] Фактически, электрическое и магнитное поля представляют собой разные грани единого электромагнитного поля, и при переходе от одной инерциальной системы отсчета к другой часть электромагнитного векторного поля E можно полностью или частично заменить на B или наоборот .[29]

Для петли из провода находящуюся в магнитном поле, закон индукции Фарадея утверждает, что наведенная электродвижущая сила (ЭДС) в проводе равна:

магнитный поток через петлю, B — магнитное поле, Σ (t) — поверхность, ограниченная замкнутым контуром ∂Σ (t), в момент времени t, d A — бесконечно малый элемент вектора площади Σ (t) (величина — это площадь бесконечно малого участка поверхности, направление вектора ортогонально этому участку поверхности).

Знак ЭДС определяется законом Ленца. Это справедливо не только для стационарного провода – но и для движущейся проволоки.

Из закона эоектромагнитной индукции Фарадея и уравнений Максвелла можно получить силу Лоренца. Верно и обратное: силу Лоренца и уравнения Максвелла можно использовать для вывода закона Фарадея.

Пусть Σ (t) — движущийся поступательно провод с постоянной скоростью v, а Σ (t) — внутренняя поверхность провода. ЭДС вокруг замкнутого пути ∂Σ (t) определяется выражением[30]

— электрическое поле, а d  — бесконечно малый векторный элемент контура ∂Σ (t).

Направление d ℓ, и d A неоднозначно. Чтобы получить правильный знак, используется правило правой руки, как описано в статье Теорема Кельвина — Стокса .

Приведенный выше результат можно сравнить с законом электромагнитной индукции Фарадея, который появляется в современных уравнениях Максвелла, называемый здесь уравнением Максвелла — Фарадея :

Уравнение Максвелла — Фарадея можно записать в интегральной форме с помощью теоремы Кельвина — Стокса .[31]

Эти два выражения эквивалентны, если провод не движется. Используя интегральное правило Лейбница и div B = 0, можно получить,

Закон индукции Фарадея справедлив независимо от того, является ли проволочная петля жесткой и неподвижной, либо она находится в движении, либо в процессе деформации, а также независимо от того, является ли магнитное поле постоянным во времени или изменяющимся. Однако бывают случаи, когда закон Фарадея либо неадекватен, либо его трудно использовать, и необходимо применять закон Лоренца. Смотрите нарушение закона Фарадея .

Если магнитное поле не зависит от времени и проводящая петля движется через поле, магнитный поток Φ B, проникающий в петлю, может изменяться несколькими способами. Например, если B- поле меняется в зависимости от положения, и петля перемещается в другое положение с другим значением B, — Φ B изменится. В качестве альтернативы, если петля изменяет ориентацию по отношению к B — полю, то B ⋅ dA дифференциальный элемент будет меняться из — за различного угла между B и d A, также изменится Ф B. В качестве третьего примера, если часть электрической схемы проходит через однородное, не зависящее от времени B- поле, а другая часть схемы остается неподвижной, то магнитный поток, связывающий всю замкнутую цепь, может измениться из-за относительного смещения положения составных частей схемы с течением времени (поверхность ∂Σ (t), зависящая от времени). Во всех трех случаях закон индукции Фарадея предсказывает появление ЭДС, порожденную изменением Φ B.

Уравнение Максвелла Фарадея подразумевает, что электрическое поле E неконсервативно, то есть когда магнитное поле B изменяется во времени, и не может быть выражено как градиент скалярного поля и не подчиняется градиентной теореме, поскольку его вращение не равно нулю.[32][33]

Поля E и B можно заменить векторным магнитным потенциалом A и (скалярным) электростатическим потенциалом ϕ посредством

Используя тождество для тройного произведения, это выражение можно переписать как,

При v = уравнение можно переписать в удобной форме Эйлера — Лагранжа

Лагранжиан для заряженной частицы с массой m и зарядом q в электромагнитном поле описывает динамику частицы с точки зрения её энергии, а не силы, действующей на неё. Классическое выражение задается следующим образом:[34]

Потенциальная энергия зависит от скорости частицы, поэтому сила зависит от скорости, и соответственно она не является консервативной.

Действие — это релятивистская длина пути частицы в пространстве-времени, за вычетом вклада потенциальной энергии, плюс дополнительный вклад, который квантово-механически является дополнительной фазой, которую получает заряженная частица, когда она движется вдоль векторного потенциала.

Используя сигнатуру метрики (1, −1, −1, −1), сила Лоренца для заряда q может быть записана в[36] ковариантной форме :

τ собственное время частицы, F αβ — контравариантный тензор электромагнитного поля

Поля преобразуются в систему, движущуюся относительной неподвижно системы с постоянной скоростью, с помощью:

Подставляя компоненты ковариантного тензора электромагнитного поля F, получаем

Расчет для α = 2, 3 (компоненты силы в направлениях y и z) приводит к аналогичным результатам, поэтому объединение 3 уравнений в одно:

и поскольку дифференциалы по координатному времени dt и собственному времени связаны между собой Лоренц-фактором,

Это в точности закон Лоренца, однако важно отметить, что p — это релятивистское выражение,

Правильная (инвариант — неадекватный термин, потому что никакое преобразование не было определено) форма закона Лоренца

Здесь порядок важен, потому что между бивектором и вектором скалярное произведение антисимметрично. При таком расщеплении пространства-времени можно получить скорость и поля, как указано выше, что дает обычное выражение.

Эксперимент, показывающий воздействие силы Лоренца на заряженные частицы
Пучок электронов, движущихся по круговой траектории под воздействием магнитного поля. Свечение вызвано возбуждением атомов остаточного газа в баллоне