Радиан

1 радиан — центральный угол, длина дуги которого равна радиусу окружности.

Радиа́н (русское обозначение: рад, международное: rad; от лат. radius — луч, радиус) — угол, соответствующий дуге, длина которой равна её радиусу[1]. Единица измерения плоских углов в Международной системе единиц (СИ), а также в системах единиц СГС и МКГСС[2].

Радианная мера — угловая мера, в которой за единицу принимается угол в 1 радиан. То есть, радианная мера любого угла — это отношение этого угла к радиану[3]. Из определения следует, что величина полного угла равна 2π радиан (см. рис. справа).

Определить радианную меру можно и так: радианная мера угла — отношение длины дуги окружности, находящейся между сторонами угла, к радиусу этой окружности, когда центр окружности совпадает с вершиной угла. В геометрии для определения радианной меры угла используют единичную окружность с центром в вершине угла; тогда радианная мера угла равна длине дуги единичной окружности между сторонами угла[4][5].

Поскольку длина дуги окружности пропорциональна её угловой мере и радиусу, длина дуги окружности радиуса R и угловой величины α, измеренной в радианах, равна α ∙ R.

Так как величина угла, выраженная в радианах, равна отношению длины дуги окружности (м) к длине её радиуса (м), угол в радианном измерении — величина безразмерная.

В качестве единицы измерения плоских углов в Международной системе единиц (СИ) радиан был принят XI Генеральной конференцией по мерам и весам в 1960 году одновременно с принятием системы СИ в целом[6]. В настоящее время в системе СИ радиан квалифицируется как когерентная[7] безразмерная производная единица СИ, имеющая специальные наименование и обозначение. Русское обозначение — рад, международное — rad[8].

Безразмерность плоского угла означает, что единицей его измерения является число один. Однако, применительно к плоскому углу единице «один» было присвоено специальное наименование «радиан» для того, чтобы в каждом конкретном случае облегчить понимание того, какая именно величина имеется в виду[9].

Десятичные кратные и дольные единицы радиана образуются с помощью стандартных приставок СИ, однако используются редко. Так, в миллирадианах, микрорадианах и нанорадианах измеряется угловое разрешение в астрономии. В кратных единицах (килорадианах и т. д.) измеряется набег угловой фазы. Сокращённое обозначение (рад, rad) основной и производных единиц не следует путать с устаревшей единицей измерения поглощённой дозы ионизирующего излучения — рад.

Пропорциональное соотношение радиана с другими единицами измерения углов описывается формулой:

При рассмотрении тригонометрических функций в математическом анализе всегда считается, что аргумент выражен в радианах, что упрощает запись; при этом само обозначение рад (rad) часто опускается.

Первое использование радиана вместо углового градуса обычно приписывают Роджеру Котсу (XVIII век), который считал эту единицу измерения угла наиболее естественной[12]. Однако идея измерять длину дуги радиусом окружности использовалась и другими математиками. Например, Аль-Каши использовал единицу измерения, названную им «часть диаметра», которая равнялась 1/60 радиана. Также им использовались и более мелкие производные единицы[13].

Термин «радиан» впервые появился в печати 5 июня 1873 года в экзаменационных билетах, составленных Джеймсом Томсоном из Университета Квинса в Белфасте. Томсон использовал термин не позднее 1871 года, в то время как Томас Мьюр из Сент-Эндрюсского университета в 1869 году колебался в выборе между терминами «рад», «радиал» и «радиан». В 1874 году Мьюр, после консультаций с Джеймсом Томсоном, решил использовать термин «радиан»[14][15][16].