Проекция (геометрия)

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от , проверенной 13 февраля 2021; проверки требуют .

Проекционный метод изображения предметов основан на их зрительном представлении. Если соединить все точки предмета прямыми линиями (проекционными лучами) с постоянной точкой О (центр проекции), в которой предполагается глаз наблюдателя, то на пересечении этих лучей с какой-либо плоскостью получается проекция всех точек предмета. Таким образом получаем на плоскости перспективное изображение предмета, или центральную проекцию.

Если центр проекции бесконечно удалён от картинной плоскости, то говорят о параллельной проекции; при этом если проекционные лучи падают перпендикулярно к плоскости — то об ортогональной проекции, а если наклонно — о косоугольной.

Если плоскость проекции не параллельна ни одной из координатных плоскостей прямоугольной системы — это аксонометрическая проекция.

Проекция в этом смысле (упомянутая во введении в пункте 2) — широко применяется в линейной алгебре (подробнее, см.: Проекция (линейная алгебра)), но на практике не только в достаточно абстрактных контекстах, но и при работе с векторами любой природы, размерности и степени абстракции, и даже в элементарной геометрии, а также — очень широко — при использовании прямолинейных координат (как прямоугольных или аффинных).

Отдельно следует упомянуть проекцию точки на прямую и проекцию вектора на прямую (на направление).

Термин проекция в этом смысле употребляется и в отношении самой операции проецирования, и в отношении её результата (при операции проецирования на прямую образы точки, вектора, множества точек называются проекцией точки, вектора, множества точек на эту прямую).

Элементарное описание ортогональной проекции точки на прямую сводится к тому, что из точки на прямую следует опустить перпендикуляр, и его пересечение с прямой даст образ точки (проекцию точки на эту прямую). Это определение работает и на плоскости, и в трёхмерном пространстве, и в пространстве любой размерности.

Элементарное определение проекции вектора на прямую легче всего дать, представив вектор направленным отрезком. Тогда на прямую можно спроецировать его начало и его конец, и направленный отрезок от проекции начала к проекции конца исходного вектора даст его проекцию на прямую.

Проекцией вектора на некоторое направление обычно называют число, совпадающее по абсолютной величине с длиной проекции этого вектора на прямую, определяющую это направление; знак же числа выбирается так, что оно считается положительным, когда направление этой проекции совпадает с данным направлением, и отрицательным, когда направление противоположно.

Неортогональная проекция используется реже, к тому же даже при использовании, особенно в элементарных контекстах, этот термин не всегда используется.

Проще всего неортогональную проекцию на прямую можно задать, задав саму эту прямую и плоскость (в двумерном случае — вместо плоскости другую прямую, в случае n-мерного пространства — гиперплоскость размерности (n-1)), пересекающую прямую. Проекция точки определяется как пересечение плоскости (гиперплоскости), содержащей эту точку и параллельную плоскости, задающей проекцию.

В случае, когда плоскость (гиперплоскость), задающая проекцию, ортогональна прямой, мы получаем ортогональную проекцию (это может быть её альтернативным определением). Поэтому собственно для неортогональной проекции надо потребовать, чтобы эта ортогональность отсутствовала.

Для неортогональной проекции вектора на прямую и на направление определения получаются, исходя из приведённого определения проекции точки, прямо аналогично тому, как это было описано в параграфе об ортогональной проекции.

Тем не менее понятие неортогонального проецирования может быть полезным (по крайней мере, если не бояться терминологической путаницы) для введения косоугольных координат и работы с ними (через них может быть в принципе довольно легко определено понятие координат точки и координат вектора в этом случае).