Задача двух тел

В классической механике, задача двух тел состоит в том, чтобы определить движение двух точечных частиц, которые взаимодействуют только друг с другом. Распространённые примеры включают спутник, обращающийся вокруг планеты, планета, обращающаяся вокруг звезды, две звезды, обращающиеся вокруг друг друга (двойная звезда), и классический электрон, движущийся вокруг атомного ядра.

Задачу двух тел можно представить как две независимые задачи одного тела, которые привлекают решение для движения одной частицы во внешнем потенциале. Так как многие задачи с одним телом могут быть решены точно, соответствующая задача с двумя телами также может быть решена. В отличие от этого, задача с тремя телами (и, более широко, задача n тел) не может быть решена, кроме специальных случаев.

Два тела с одинаковой массой, движущиеся вокруг общего центра масс по эллиптическим орбитам.

Задача двух тел в астрономии примечательна, потому что пары астрономических объектов часто быстро движутся в произвольных направлениях, и разделены большими расстояниями друг от друга (чтобы они не сталкивались) и даже на большее расстояние отделены от других объектов. Так что внешние влияния оказываются достаточно малы, чтобы ими можно было пренебречь. Под действием силы тяжести каждый объект из пары будет вращаться вокруг общего центра масс по эллиптической траектории, если только они не движутся достаточно быстро, чтобы полностью разбежаться друг от друга, и в этом случае их пути будут расходиться вдоль других плоских конических секций. Если же один объект намного тяжелее другого, то он будет двигаться намного медленнее другого относительно общего центра масс. Взаимный центр масс может находиться даже внутри более крупного объекта. Для математического обзора решений для этого случая см. проблема Кеплера.

В принципе, те же решения применимы и к макроскопическим задачам, включающим объекты, взаимодействующие не только посредством гравитации, но и через любое другое притягивающее скалярное силовое поле, подчиняющееся закону обратных квадратов, с очевидным физическим примером электростатического притяжения. На практике такие задачи возникают редко. За исключением, возможно, экспериментальных аппаратов или другого специализированного оборудования, мы редко сталкиваемся с электростатически взаимодействующими объектами, которые движутся достаточно быстро и в таком направлении, чтобы избежать столкновения, и/или которые достаточно изолированы от своего окружения.

Динамическая система уравнений для движения двух тел под действием крутящего момента оказывается уравнением Штурма — Лиувилля[1].

Хотя модель двух тел рассматривает объекты как точечные частицы, классическая механика применима только к системам макроскопического масштаба. Большинство особенностей поведения субатомных частиц не может быть предсказаны в классической постановке задачи.

Электроны в атоме иногда называют «обращающимися» вокруг своего ядра, после ранней гипотезы Нильса Бора (это является источником термина «орбитального движения»). Однако электроны на самом деле не вращаются вокруг ядер в каком-либо значимом смысле, и квантовая механика необходима для любого содержательного понимания реального поведения электрона. Решение классической задачи двух тел для электрона, обращающегося вокруг атомного ядра, вводит в заблуждение и не приводит к полезным следствиям.

Вычитая уравнение (2) из уравнения (1) и преобразуя приходим к уравнению

Пусть между телами действует гравитационное притяжение. Сила, действующая между ними, равна:

Постоянный вектор h, являющийся постоянной интегрирования, называется кинетическим моментом системы. Взаимное движение тел происходит в плоскости, перпендикулярной этому вектору. Введём систему цилиндрических координат r, φ, z. Единичные векторы вдоль радиальной, трансверсальной и вертикальной оси обозначим как i, j и k. Проекции скорости на радиальную и трансверсальную оси составят

В левой части последнего выражения стоит удвоенная площадь треугольника, описываемого радиус-вектором r за единицу времени. Таким образом, это соотношение является математической записью второго закона Кеплера.

Последнее соотношение является выражением закона сохранения механической энергии в системе.

Нормальная орбита любого тела, захваченного притяжением другого тела, представляет собой эллипс или окружность — именно такие орбиты мы наблюдаем в Солнечной системе. Однако, общая теория относительности утверждает, что в окрестностях крайне массивных тел — там, где пространство оказывается сильно искривлено благодаря наличию колоссального гравитационного поля — спектр возможных стабильных орбит значительно расширяется, Напротив, устойчивые в классической задаче двух тел орбиты оказываются неустойчивыми в релятивистской задаче двух тел. При малых расстояниях от притягивающего центра исчезает существующий в классической кеплеровской задаче «центробежный барьер», не позволяющий пробной частице упасть на притягивающий центр.

На самом деле даже в относительно слабом гравитационном поле в Солнечной системе наблюдаются релятивистские отклонения от классических эллиптических орбит. Такое отклонение для Меркурия (поворот перигелия орбиты со скоростью около 43 угловых секунд за столетие), не предсказываемое ньютоновской механикой, было известно задолго до создания общей теории относительности, которая смогла объяснить этот ранее загадочный эффект.

Любая классическая система, состоящая из двух частиц, по определению задача двух тел. Во многих случаях, однако, одно тело много тяжелее другого, как например в системе Земля и Солнце. В таких случаях более тяжёлая частица играет роль центра масс и задача сводится к задаче о движения одного тела в потенциальном поле другого тела[2].

Собственно, закон всемирного тяготения Ньютона рассматривает именно такую ​​ситуацию, до сих пор на планете его точности хватает с огромным избытком. Однако, при этом не следует забывать, что появляется риск потери требуемой для реальных действий точности расчетов - при злоупотреблении упрощением. В частности, без учета взаимодействия масс или, другими словами, гравитационно-инерционных потенциалов обоих тел[3][4] невозможны современные космические расчеты. Нахождение места центра вращения в более массивном теле расплывчато, и в реалиях ещё нужен учёт иных тел и полей. Необходим предварительный анализ, особенно при расчёте устоявшихся и стационарных орбит: многократное вращение неизбежно накопит неточности до неприемлемой величины ошибки.