Постоянная тонкой структуры

Постоянная тонкой структуры (ПТС) — это безразмерная величина, образованная комбинацией фундаментальных констант. Её численное значение не зависит от выбранной системы единиц.

С 2018 года CODATA рекомендует использовать следующее значение константы[1]:

Относительная погрешность измерения α и 1/α на 2020 год составляет[1][2] 1,5·10−10; это одна из наиболее точно измеренных физических констант.

В Международной системе единиц (СИ) постоянная тонкой структуры определяется следующим образом:

В системе единиц СГСЭ единица электрического заряда определена таким образом, что электрическая постоянная равна единице. Тогда постоянная тонкой структуры определяется как

Постоянная тонкой структуры может быть также определена как квадрат элементарного электрического заряда, выраженного в единицах планковского заряда:

В рациональной системе единиц квадратный корень из постоянной тонкой структуры является единицей измерения электрического заряда.

В квантовой электродинамике постоянная тонкой структуры имеет значение константы взаимодействия, характеризующей силу взаимодействия между электрическими зарядами и фотонами. Её значение не может быть предсказано теоретически и вводится на основе экспериментальных данных. Постоянная тонкой структуры является одним из двадцати «внешних параметров» Стандартной модели в физике элементарных частиц.

Если бы предсказания квантовой электродинамики были верны, то постоянная тонкой структуры принимала бы бесконечно большое значение при значении энергии, известном как полюс Ландау. Это ограничивает область применения квантовой электродинамики только областью применимости теории возмущений.

Постоянная тонкой структуры, являясь безразмерной величиной, которая никак не соотносится ни с какой из известных математических констант, всегда являлась объектом восхищения для физиков. Ричард Фейнман, один из основателей квантовой электродинамики, называл её . Предпринималось большое количество попыток выразить эту постоянную через чисто математические величины или вычислить на основе каких-либо физических соображений. Так, ещё в 1914 году химики Гилберт Льюис и Эллиот Адамс (Elliot Quincy Adams), отталкиваясь от выражения для константы Стефана, после некоторых предположений выразили[47] постоянную Планка через заряд электрона и скорость света. Если составить из их формулы постоянную тонкой структуры, которая тогда ещё не была известна, получится[48]

«одной из величайших проклятых тайн физики: магическое число, которое приходит к нам без какого-либо понимания его человеком»

Первую попытку связать постоянную тонкой структуры с параметрами Вселенной предпринял в 1925 году ливерпульский физик Джеймс Райс (James Rice), находившийся под большим впечатлением от работ астрофизика Артура Эддингтона по объединению общей теории относительности с электромагнетизмом[52][53].

Хотя некоторые ведущие физики (Зоммерфельд, Шрёдингер, Йордан) с интересом отнеслись к теории Эддингтона, вскоре стала ясна трудность согласования с экспериментом; кроме того, было трудно понять методику Эддингтона. По меткому выражению Вольфганга Паули, это была скорее «романтическая поэзия, а не физика».[63][64] Тем не менее, эта теория породила множество последователей, предлагавших свои более или менее спекулятивные подходы к анализу происхождения постоянной тонкой структуры[65]. Так в 1929 году Владимир Рожанский (Vladimir Rojansky) фактически «переоткрыл» соотношение Аллена между массами протона и электрона[66], а Энос Уитмер (Enos Witmer) предложил[67] соотношение между массами атомов гелия и водорода в виде

После открытия мюона в 1937 году возникли спекулятивные предположения о связи новой частицы с константами природы. Согласно Патрику Блэкетту[75], возможна связь между гравитацией и временем жизни мюона в виде

Анализ ренорм-групповых свойств квантовой электродинамики (КЭД) и, в частности, свойств бета-функции КЭД к настоящему времени не позволил объяснить наблюдаемое значение постоянной тонкой структуры[86]. Алгебраические выражения для постоянной могут быть выведены из рассмотрения инвариантов групп симметрии тех или иных обобщений теории поля. Так, Уайлер (A. Wyler) исследовал[87] пятимерное уравнение Клейна — Гордона и получил

В некоторых подходах делаются попытки связать электромагнитные и гравитационные взаимодействия на основе формализма квантовой теории поля и вывести отсюда значение постоянной тонкой структуры. В частности, указание на такую связь могут дать поиски конверсии фотонов в гравитоны и, как следствие, взаимозависимости в изменении констант электромагнитного и гравитационного взаимодействий на различных энергетических масштабах. Так, подобные гипотезы приводят к оценкам вида

Другую оценку постоянной тонкой структуры можно получить из рассмотрения компактификации пятого измерения в теории Калуцы — Клейна:

В теории струн взаимосвязь между гравитацией и электромагнетизмом возникает как следствие соотношений между параметрами открытых и замкнутых струн. При некоторых дополнительных предположениях это позволяет получить следующее соотношение:

Возможна и ассоциация с предполагаемой размерностью пространства-времени[94]: в одной из самых многообещающих теорий последнего времени — так называемой «М-теории», развивающейся как обобщение теории суперструн и претендующей на описание всех физических взаимодействий и элементарных частиц — пространство-время полагается 11-мерным. При этом одно измерение на макроуровне воспринимается как время, ещё три — как макроскопические пространственные измерения, остальные семь — это так называемые «свернутые» (квантовые) измерения, ощущаемые только на микроуровне. ПТС при этом объединяет числа 1, 3 и 7 с множителями, кратными десяти, причём 10 можно интерпретировать как суммарную размерность пространства в теории суперструн.

Похожим образом математик Джэймс Гилсон предложил, что постоянная тонкой структуры может быть математически, с большой степенью точности, определена как

Значения вычислены как средние значения других измерений и не были получены как результат одного измерения.

Ричард Фейнман: «С тех пор, как его открыли свыше пятидесяти лет назад, это число остаётся тайной. Все хорошие физики-теоретики выписывают это число на стене и мучаются из-за него. … хотелось бы узнать, как появляется это число: выражается ли оно через пи, или, может быть, через основание натуральных логарифмов? Никто не знает. Это одна из величайших проклятых тайн физики: магическое число, которое дано нам и которого человек совсем не понимает. Можно было бы сказать, что это число написала «рука Бога», и «мы не знаем, что двигало Его карандашом». Мы знаем, что надо делать, чтобы экспериментально измерить это число с очень большой точностью, но мы не знаем, что делать, чтобы получить это число на компьютере – не вводя его туда тайно!».

Вольфганг Паули: «Когда я умру, первым делом посчитаю спросить у дьявола, – каков смысл постоянной тонкой структуры?»

Макс Борн: «Более совершенная теория должна была бы вывести число α с помощью чисто математических рассуждений, не ссылаясь на результаты измерений». «Но ведь то обстоятельство, что α имеет значение 1/137, а не какое-нибудь другое, конечно же, является не делом случая, а законом природы. Ясно, что объяснение числа α есть одна из центральных проблем естествознания».

Поль Дирак: «… неизвестно, почему это выражение имеет именно такое, а не иное значение. Физики выдвигали по этому поводу различные идеи, однако общепринятого объяснения до сих пор нет».