Пи (число)

3,1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989

Если диаметр окружности равен единице, то длина окружности — это число «пи»

То, что отношение длины окружности к диаметру одинаково для любой окружности, и то, что это отношение немногим более 3, было известно ещё древнеегипетским, вавилонским, древнеиндийским и древнегреческим геометрам, древнейшие приближения относятся к третьему тысячелетию до н. э.

Примерно в это же время в Европе начали развиваться методы анализа и определения бесконечных рядов. Первым таким представлением была формула Виета для приближения числа π:

В 1945 году Картрайт упростила элементарное доказательство Эрмита иррациональности числа π (Пи (число)).

В то время как последовательность обычно повышает точность на фиксированную величину с каждым следующим членом, существуют итеративные алгоритмы, которые на каждом шагу умножают количество правильных цифр, требуя, правда, высоких вычислительных затрат на каждом из таких шагов.

Прорыв в этом отношении был сделан в 1975 году, когда Ричард Брент и Юджин Саламин[en] независимо друг от друга открыли алгоритм Брента — Саламина[en], который, используя лишь арифметику, на каждом шагу удваивает количество известных знаков[19]. Алгоритм состоит из установки начальных значений

Хотя большинство предыдущих рекордов Канады было установлено при помощи алгоритма Брента — Саламина, вычисление 2002 года использовало две формулы типа мэчиновских, которые работали медленнее, но радикально снижали использование памяти.

Вычисление было выполнено на суперкомпьютере Hitachi из 64 узлов с 1 терабайтом оперативной памяти, способном выполнять 2 триллиона операций в секунду.

Важным развитием недавнего времени стала формула Бэйли — Боруэйна — Плаффа, открытая в 1997 году Саймоном Плаффом[en] и названная по авторам статьи, в которой она впервые была опубликована[21]. Эта формула,

В 2006 году Саймон Плафф, используя алгоритм PSLQ, нашёл ряд красивых формул[23]. Пусть q = eπ, тогда

где q = eπ, k — нечётное число, и a, b, c — рациональные числа. Если k — вида 4m + 3, то эта формула имеет особенно простой вид:

для рационального p, у которого знаменатель — число, хорошо разложимое на множители, хотя строгое доказательство ещё не предоставлено.

В августе 2009 года учёные из японского университета Цукубы рассчитали последовательность из 2 576 980 377 524 десятичных разрядов[24].

31 декабря 2009 года французский программист Фабрис Беллар на персональном компьютере рассчитал последовательность из 2 699 999 990 000 десятичных разрядов[25].

19 октября 2011 года Александр Йи и Сигэру Кондо рассчитали последовательность с точностью в 10 триллионов цифр после запятой[26][27].

28 декабря 2013 года американский студент Александр Йи и японский исследователь Сигэру Кондо[ja] рассчитали последовательность с точностью до 12,1 триллиона цифр после запятой[28].

14 марта 2019 года, когда отмечался неофициальный праздник числа пи, компания Google представила данное число с 31,4 триллиона знаков после запятой. Вычислить его с такой точностью сумела сотрудница Google в Японии Эмма Харука-Ивао.[35]

Программа «Супер Пи[en]», фиксирующая время, за которое вычисляется заданное количество знаков (до 32 миллионов) числа Пи, может быть использована для тестирования производительности компьютеров.

Три, четырнадцать, пятнадцать, девять два, шесть пять, три пять
Восемь девять, семь и девять, три два, три восемь, сорок шесть
Два шесть четыре, три три восемь, три два семь девять, пять ноль два
Восемь восемь и четыре, девятнадцать, семь, один

Существуют стихи, в которых первые цифры числа π зашифрованы в виде количества букв в словах:

Подобные стихи существовали и в дореформенной орфографии. Например, следующее стихотворение, сочинённое преподавателем Нижегородской гимназии Шенроком[45]:

Приведем высказывания французского астронома позапрошлого века Франсуа Араго. В своей «Общепонятной астрономии» он пишет[48]: "Посмотрим, с какою точностью возможно, пользуясь цифрами Пи (числа Пи), вычислить длину окружности, радиус которой равен среднему расстоянию Земли от Солнца (150 000 000 км). Если для Пи взять 18 цифр, то ошибка на одну единицу в последней цифре повлечет за собой в длине вычисляемой окружности погрешность в 0,0003 миллиметра; это гораздо меньше толщины волоса.

«Мы взяли 18 цифр Пи. Легко представить себе, какую невообразимо малую погрешность сделали бы, при огромности вычисляемой окружности, если бы воспользовались для Пи всеми известными его цифрами. Из сказанного ясно, как заблуждаются те, которые думают, будто науки изменили бы свой вид, и их применения много выиграли бы от нахождения точного Пи, если бы оно существовало.

Итак, даже для астрономии‚ — науки, прибегающей к наиболее точным вычислениям‚ — не требуется вполне точного решения…»