Оператор (математика)

Опера́тор (позднелат. operator — работник, исполнитель, от operor — работаю, действую) — математическое отображение между множествами, в котором каждое из них наделено какой-либо дополнительной структурой (порядком, топологией, алгебраическими операциями). Понятие оператора используется в различных разделах математики для отличия от другого рода отображений (главным образом, числовых функций); точное значение зависит от контекста, например в функциональном анализе под операторами понимают отображения, ставящие в соответствие функции другую функцию («оператор на пространстве функций» вместо «функции от функции»).

Операторы, изменяющие аргумент функции, называются операторами преобразования или преобразованиями. Преобразование подменяет координатные оси, отображает функцию в другое пространство. Например преобразование Фурье из временной в частотную область:

Изучением общих свойств операторов и применением их к решению различных задач занимается теория операторов. Например, оказывается, что у оператора умножения вектора на матрицу и оператора свёртки функции с весом есть много общих свойств.

Частный случай линейного оператора, возвращающий операнд в неизменном виде:

В математике и технике широко применяется условная форма записи операторов, аналогичная алгебраической символике. Такая символика в ряде случаев позволяет избежать сложных преобразований и записывать формулы в простой и удобной форме. Аргументы оператора называются операндами, число операндов называется арностью оператора (например, одинарный, бинарный). Написание операторов можно систематизировать следующим образом:

Символ линейного дифференциального оператора сопоставляет дифференциальному оператору многочлен, грубо говоря, заменяя композицию частных производных на произведение ассоциированных с ними переменных. Старшие мономы символа оператора (главный символ оператора) отражают качественное поведение решения уравнения в частных производных, соответствующего этому оператору. Линейные эллиптические уравнения в частных производных характеризуются тем, что их главный символ нигде не обращается в 0.

и является частью полного символа оператора, которая преобразуется как тензор при замене координат.