Нормированное пространство

Нормированное пространство — векторное пространство с заданной на нём нормой; один из основных объектов изучения функционального анализа.

Норма является естественным обобщением понятия длины вектора в евклидовом пространстве, таким образом, нормированные пространства — векторные пространства, оснащённые возможностью определения длины вектора.

Не во всяком метрическом векторном пространстве может быть определена норма.

Наиболее важными отображениями между двумя нормированными векторными пространствами являются непрерывные линейные отображения. Нормированные векторные пространства с такими отображениями образуют категорию.

Норма — это непрерывная функция в своём векторном пространстве. Все линейные отображения между конечномерными векторными пространствами также непрерывны.

Нормированные пространства как фактор пространства полунормированных пространств

Определения многих нормированных пространств (например, банахова пространства) включают полунорму, определённую в векторном пространстве, а затем нормированное пространство определяется как факторпространство с помощью подпространства элементов, чья полунорма равна нулю. Например, в случае , функция, определяемая как:

является полунормой в векторном пространстве всех функций, интеграл Лебега от которых (справа) определён и конечен.

Однако полунорма равна нулю для всех функций, носитель которых имеет нулевую меру Лебега. Эти функции образуют подпространство, которое «вычёркивается», что делает их эквивалентными нулевой функции.