Неравновесная термодинамика

Неравновесная термодинамика — раздел термодинамики, изучающий системы вне состояния термодинамического равновесия и необратимые процессы. Возникновение этой области знания связано главным образом с тем, что подавляющее большинство встречающихся в природе систем находятся вдали от термодинамического равновесия.

Необходимость в создании новой теории возникла в первой половине двадцатого века. Пионером в этом направлении стал Ларс Онзагер, в 1931 году опубликовавший две работы, посвященные неравновесной термодинамике.[1][2] В дальнейшем значительный вклад в развитие неравновесной термодинамики внесли Эккарт[3], Майкснер и Райк[4], Д. Н. Зубарев[5], Пригожин[6], Де Гроот и Мазур[7], Гуров К. П. и другие. Следует отметить, что теория неравновесных систем активно развивается и в настоящее время.

Классическая неравновесная термодинамика основана на фундаментальном предположении о локальном равновесии (И. Р. Пригожин, 1945[8]). Концепция локального равновесия заключается в том, что , то есть рассматриваемая система может быть мысленно разделена в пространстве на множество элементарных ячеек, достаточно больших, чтобы рассматривать их как макроскопические системы, но в то же время достаточно малых для того, чтобы состояние каждой из них было близко к состоянию равновесия. Данное предположение справедливо для очень широкого класса физических систем, что и определяет успех классической формулировки неравновесной термодинамики.

равновесные термодинамические соотношения справедливы для термодинамических переменных, определённых в элементарном объёме

В то же время все интенсивные переменные, такие как температура, давление и химический потенциал должны быть заменены соответствующими функциями координат и времени:

Далее, посредством введенных выше функций переписываются законы и соотношения из равновесной термодинамики в локальной форме. Первое начало (закон сохранения энергии):

Важную роль в классической неравновесной термодинамике играет локальная форма уравнения Гиббса—Дюгема:

Переписав на последнем соотношении с учетом локальной формы закона сохранения энергии, массы, и сравнив с локальной формой второго начала, нетрудно получить следующий вид для производства энтропии:

Как видно, потоки и силы могут быть не только скалярами, но также векторами и тензорами.

Потоки являются неизвестными величинами, в отличие от сил, которые представляют собой функции от переменных состояния и/или их градиентов. Экспериментально установлено, что потоки и силы связаны друг с другом, причем заданный поток зависит не только от своей силы, но может зависеть также от других термодинамических сил и от переменных состояния:

Соотношения такого вида между потоками и силами называются феноменологическими соотношениями или материальными уравнениями. Они в совокупности с уравнениями баланса массы, импульса и энергии представляют замкнутую систему уравнений, которая может быть решена при заданных начальных и граничных условиях. Так как в положении термодинамического равновесия силы и потоки обращаются в нуль, то разложение материального уравнения вблизи положения равновесия принимает следующий вид:

Другим важным результатом, полученным в рамках линейной неравновесной термодинамики, является теорема о минимуме производства энтропии:

В линейном режиме полное производство энтропии в системе, подверженной потоку энергии и вещества, в неравновесном стационарном состоянии достигает минимального значения.

Также в этом случае (линейный режим, стационарное состояние) показано, что потоки с собственными нулевыми силами равны нулю. Таким образом, например, при наличии постоянного градиента температуры, но при отсутствии поддерживаемого градиента концентрации система приходит к состоянию с постоянным потоком тепла, но с отсутствием потока вещества.

Несмотря на успехи классического подхода, у него есть существенный недостаток — он основывается на предположении о локальном равновесии, что может оказаться слишком грубым допущением для достаточно обширного класса систем и процессов, таких как системы с памятью, растворы полимеров, сверхтекучие жидкости, суспензии, наноматериалы, распространение ультразвука в газах, гидродинамика фононов, ударные волны, разреженные газы и т. д. Важнейшими критериями, которые предопределяет, к какому из термодинамических подходов следует обратиться исследователю при математическом моделировании конкретной системы, являются скорость изучаемого процесса и желаемый уровень согласия теоретических результатов с экспериментом. Классическая равновесная термодинамика рассматривает квазистатические процессы, классическая неравновесная термодинамика — относительно медленные неравновесные процессы (теплопроводность, диффузию и т. п.) Ограничения, накладываемые принципом локального равновесия на скорость моделируемого процесса, снимаются в таких подходах к построению неравновесной термодинамики, как рациональная термодинамика и расширенная неравновесная термодинамика.

Рациональная термодинамика рассматривает термические явления в сплошных средах на основе нетрадиционного подхода К. Трусделла, П. А. Жилина и их последователей[9][10][11][12]: «традиционный подход… ни в коем случае не является неправильным, однако он не удовлетворяет современным требованиям строгости и ясности»[13]. К. Трусделл ведёт отсчёт истории рациональной термодинамики от работ Б. Коулмена[fr] и У. Нолла[en] 1950-х годов[14] (см. Noll, 1975).

Цель продолжающей развиваться рациональной термодинамики — создать строгую математическую аксиоматику исходных положений термомеханики сплошных сред с тем, чтобы она охватывала по возможности максимально широкий класс моделей, а интуитивные представления о физических явлениях нашли своё выражение в математической форме определяющих соотношений. Фундамент теории строится на базе таких математических структур и понятий, как векторные, метрические и топологические пространства, непрерывные и дифференцируемые отображения, многообразия, тензоры, группы и их представления и т. п. Для простых объектов такой усложненный подход не требуется, но для более сложных явлений в сплошных средах, например вязкоупругости, ползучести, эффектов памяти (гистерезис), релаксации и т. п., построение феноменологических моделей часто наталкивается на трудности, значительная часть которых относится к формированию адекватного математического аппарата. Поэтому точное описание математической структуры объекта на основе аксиоматики и её логических следствий имеет не только методический интерес, но и прикладное значение.

Расширенная неравновесная термодинамика[19][20][21][22] ориентирована на рассмотрение процессов в ситуациях, когда характерное время процесса сравнимо со временем релаксации. Она базируется на отказе от принципа локального равновесия и обусловленного этим обстоятельством применением дополнительных переменных для задания локально-неравновесного состояния элементарного объёма среды. В этом случае в выражения для энтропии, потока энтропии и скорости возникновения энтропии включают дополнительные независимые переменные, в качестве которых используют диссипативные потоки, то есть поток энергии, поток массы и тензор напряжений, а также потоки второго и более высоких порядков (поток потока энергии и т. д.)[23][24]. Такой подход хорошо зарекомендовал себя для описания быстрых процессов и для малых линейных масштабов.

Отказ от формализма классической неравновесной термодинамики с математической точки зрения означает замену дифференциальных уравнений параболического типа на гиперболические дифференциальные уравнения для диссипативных потоков эволюционного (релаксационного) типа. Это, в свою очередь, означает замену противоречащих как экспериментальным данным, так и принципу причинности моделей с бесконечной скоростью распространения возмущений в сплошной среде (типа модели Фурье, в соответствии с которой изменение температуры в какой-то точке мгновенно распространяется на всё тело) на модели с конечной скоростью распространения возмущений.

Уравнение теплопроводности гиперболического типа сочетает в себе свойства как классического закона Фурье, описывающего чисто диссипативный способ передачи энергии, так и волнового уравнения, описывающего распространение незатухающих волн. Это объясняет экспериментально наблюдаемые волновые свойства процесса теплопереноса при низких температурах — распространение тепловой волны с конечной скоростью, отражение тепловой волны от теплоизолированной границы, а при падении на границу раздела двух сред частичное отражение и частичное прохождение в другую среду, интерференцию тепловых волн[24].

Последовательное введение потоков второго и более высокого порядков приводит к тому, что математические модели, описывающие локально-неравновесные процессы переноса, представляют собой иерархическую последовательность дифференциальных уравнений в частных производных, порядок которых увеличивается с увеличением степени отклонения системы от локального равновесия.

Гамильтонова формулировка неравновесной термодинамики[25] привлекает элегантностью, лаконичностью и мощными численными методами, разработанными для гамильтоновых систем. Рассмотрению связи между принципом Гамильтона и интегральным вариационным принципом Дьярмати посвящён раздел в монографии[26].