Математический анализ

Математи́ческий ана́лиз (классический математический анализ) — совокупность разделов математики, соответствующих историческому разделу под наименованием «анализ бесконечно малых», объединяет дифференциальное[⇨] и интегральное[⇨] исчисления.

На классическом математическом анализе основывается современный анализ, который рассматривается как одно из трёх основных направлений математики (наряду с алгеброй и геометрией). При этом термин «математический анализ» в классическом понимании используется, в основном, в учебных программах и материалах[1]. В англо-американской традиции классическому математическому анализу соответствуют программы курсов с наименованием «исчисление» (англ. Calculus).

Предшественниками математического анализа были античный метод исчерпывания и метод неделимых. Все три направления, включая анализ, роднит общая исходная идея: разложение на бесконечно малые элементы, природа которых, впрочем, представлялась авторам идеи довольно туманной. Алгебраический подход (исчисление бесконечно малых) начинает появляться у Валлиса, Джеймса Грегори и Барроу. В полной мере новое исчисление как систему создал Ньютон, который, однако, долгое время не публиковал свои открытия[2].

Официальной датой рождения дифференциального исчисления можно считать май 1684 года, когда Лейбниц опубликовал первую статью «Новый метод максимумов и минимумов…»[3]. Эта статья в сжатой и малодоступной форме излагала принципы нового метода, названного дифференциальным исчислением.

Эти определения поясняются геометрически, при этом на рис. бесконечно малые приращения изображены конечными. Рассмотрение опирается на два требования (аксиомы). Первое:

Требуется, чтобы две величины, отличающиеся друг от друга лишь на бесконечно малую величину, можно было брать [при упрощении выражений?] безразлично одну вместо другой.[7]

Требуется, чтобы можно было рассматривать кривую линию как совокупность бесконечного множества бесконечно малых прямых линий.[8]

Но всякая непрерывно возрастающая или убывающая величина не может превратиться из положительной в отрицательную, не проходя через бесконечность или нуль… Отсюда следует, что дифференциал наибольшей и наименьшей величины должен равняться нулю или бесконечности.[10]

По замыслу Лопиталя написанное им составляло первую часть Анализа, вторая же должна была содержать интегральное исчисление, то есть способ отыскания связи переменных по известной связи их дифференциалов. Первое его изложение дано Иоганном Бернулли в его Математических лекциях о методе интеграла[12]. Здесь дан способ взятия большинства элементарных интегралов и указаны методы решения многих дифференциальных уравнений первого порядка.

Указывая на практическую полезность и простоту нового метода Лейбниц писал:

То, что человек, сведущий в этом исчислении, может получить прямо в трёх строках, другие учёнейшие мужи принуждены были искать, следуя сложными обходными путями.

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера. Изложение анализа открывает двухтомное «Введение», где собраны изыскания о различных представлениях элементарных функций. Термин «функция» впервые появляется лишь в 1692 у Лейбница,[13] однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция — это выражение для счёта (нем. Rechnungsausdrϋck) или аналитическое выражение.[14]

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств.[15]

Подчёркивая, что «основное различие функций лежит в способе составления их из переменного и постоянных», Эйлер перечисляет действия, «посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислением».[16] Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученных их класса — показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций — взятия логарифма и экспоненты[18].

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

В трёхтомном интегральном исчислении Эйлер вводит понятие интеграла так:

Следующим крупным произведением, сыгравшим значительную роль в развитии концепции анализа, явилась Теория аналитических функций[22] Лагранжа и обширный пересказ работ Лагранжа, выполненный Лакруа[23] в несколько эклектической манере.

Такой подход к трактовке понятия производной используется в современной алгебре и послужил основой для создания теории аналитических функций Вейерштрасса.

Лагранж оперировал такими рядами как формальными и получил ряд замечательных теорем. В частности, впервые и вполне строго доказал разрешимость начальной задачи для обыкновенных дифференциальных уравнений в формальных степенных рядах.[25]

Вопрос об оценке точности приближений, доставляемых частными суммами ряда Тейлора, впервые был поставлен именно Лагранжем: в конце Теории аналитических функций он вывел то, что теперь называют формулой Тейлора с остаточным членом в форме Лагранжа.[26] Однако, в противоположность современным авторам, Лагранж не видел нужды в употреблении этого результата для обоснования сходимости ряда Тейлора.

Вопрос о том, действительно ли функции, употребимые в анализе, могут быть разложены в степенной ряд, впоследствии стал предметом дискуссии. Конечно, Лагранжу было известно, что в некоторых точках элементарные функции могут не разлагаться в степенной ряд, однако в этих точках они и недифференцируемы ни в каком смысле. Коши в своём Алгебраическом анализе привёл в качестве контрпримера функцию

В XVIII веке были на основе классического анализа разработаны и практически применены такие новые ветви, как вариационное исчисление, обыкновенные дифференциальные уравнения и дифференциальные уравнения в частных производных, преобразования Фурье и производящие функции. На фундаменте анализа возникла математическая физика, аналитические методы глубоко проникли в геометрию и даже в теорию чисел.

В XIX веке Коши первым дал анализу твёрдое логическое обоснование, введя понятие предела последовательности, он же открыл новую страницу комплексного анализа. Пуассон, Лиувилль, Фурье и другие изучали дифференциальные уравнения в частных производных и гармонический анализ.

В последней трети XIX века Вейерштрасс произвёл арифметизацию анализа, полагая геометрическое обоснование недостаточным, и предложил классическое определение предела через [en]. Он же создал первую строгую теорию множества вещественных чисел. В это же время попытки усовершенствования теоремы об интегрируемости по Риману привели к созданию классификации разрывности вещественных функций. Также были открыты «патологические» примеры (нигде не дифференцируемые непрерывные функции, заполняющие пространство кривые). В связи с этим Жордан разработал теорию меры, а Кантор — теорию множеств, и в начале XX века математический анализ был формализован с их помощью. Другим важным событием XX века стала разработка Робинсоном нестандартного анализа — альтернативного подхода к обоснованию анализа; притом средствами нестандартного анализа обнаружены несколько новых результатов, которые не были известны в классическом анализе, но принципиально могли бы быть получены и классическими средствами[28].

Дифференциальное исчисление изучает определение, свойства и применение производных функций. Процесс нахождения производной называется дифференцированием. Для заданной функции и точки из области её определения производная в этой точке является способом кодирования мелкомасштабного поведения этой функции вблизи этой точки. Найдя производную функции в каждой точке в области определения, можно определить новую функцию, называемую производной функцией или просто производной от исходной функции. На математическом языке производная является линейным отображением, на входе которого одна функция, а на выходе другая. Это понятие является более абстрактным, чем большинство процессов, изучаемых в элементарной алгебре, где функции обычно имеют на входе одно число, а на выходе другое. Например, если для функции удвоения задать на входе три, на выходе будет шесть; если для квадратичной функции задать на входе три, на выходе будет девять. Производная же может иметь квадратичную функцию в качестве входа. Это означает, что производная берёт всю информацию о функции возведения в квадрат, то есть: при входе два, она даёт на выходе четыре, три преобразует в девять, четыре — в шестнадцать и так далее, и использует эту информацию для получения другой функции. (Производной квадратичной функции является как раз функция удвоения.)

Наиболее распространённым символом для обозначения производной является апострофоподобный знак, называемый штрихом. Таким образом, производная функции f есть f′, произносится «f штрих». Например, если f(x) = x2 является функцией возведения в квадрат, то f′(x) = 2x является её производной, это функция удвоения.

Если входом функции является время, то производная представляет собой изменение по времени. Например, если f является функцией, зависящей от времени, и она даёт на выходе положение мяча во времени, то производная f определяет изменение положения мяча по времени, то есть скорость мяча.

Если функция является линейной (то есть, если графиком функции является прямая линия), то функцию можно записать в виде y = mx + b, где x — независимая переменная, y — зависимая переменная, а b — это y-отсечка, при этом:

Это выражение даёт точное значение угла наклона прямой линии. Если график функции не является прямой линией, то изменение y делённое на изменение x меняется от точки к точке. Производная даёт точный смысл понятия изменения выходного значения по отношению к изменению входа. Чтобы быть конкретным, пусть f есть функция, и мы фиксируем точку a в области определения f. (a, f(a)) является точкой на графике функции. Если h — близкое к нулю число, то a + h является числом, близким к a. Поэтому точка (a + h, f(a + h)) близка к точке (a, f(a)). Угол наклона между этими двумя точками равен:

Это выражение называется разностным соотношением. Линия, проходящая через две точки на кривой, называется секущей линией, поэтому m является углом наклона секущей линии между (a, f(a)) и (a + h, f(a + h)). Секущая является лишь приближением к поведению функции в точке, поскольку она не учитывает поведение функции между точками a и (a + h, f(a + h)). Определить это поведении, установив h равным нулю, невозможно, поскольку потребовалось бы делить на ноль, что исключено. Производная определяется путём перехода к пределу при h стремящемся к нулю, что означает, что он рассматривает поведение f для всех малых значениях h и выделяет приемлемое значение для случая, когда h равно нулю:

Геометрически производная равна углу наклона касательной к графику функции f в точке a. Касательная является пределом секущих линий, так же как производная является пределом разностных соотношений. По этой причине производную иногда называют наклоном функции f.

Вот конкретный пример, производная функция возведения в квадрат в точке 3. Пусть f(x) = x2 является квадратичной функцией.

Наклон касательной к квадратичной функции в точке (3;9) равно 6, то есть она растёт вверх в шесть раз быстрее, чем отклоняется право. Вычисление предела, описанное выше, можно выполнить для любой точки в области определения квадратичной функции. Это определяет производную функцию или просто для краткости производную от функции возведения в квадрат. Проведённые расчёты показывают что производная квадратичной функции есть функция удвоения.

Интегральное исчисление — это изучение определения, свойств и применения двух взаимосвязанных понятий: неопределённого интеграла и определённого интеграла. Процесс поиска значения интеграла называется интегрированием. В технических терминах интегральное исчисление является исследованием двух связанных линейных операторов.

Неопределённый интеграл является первообразной, то есть операцией, обратной к производной. F является неопределённым интегралом от f в том случае, когда f является производной от F. (Это использование прописных и строчных букв для функции и её неопределённого интеграла распространено в исчислении).

Определённый интеграл входной функции и выходных значений есть число, которое равно площади поверхности, ограниченной графиком функции, осью абсцисс и двумя отрезками прямых линий от графика функции до оси абсцисс в точках выходных значений. В технических терминах определённый интеграл есть предел суммы площадей прямоугольников, называемой суммой Римана.

Примером из физики является вычисление пройденного расстояния при ходьбе в любой момент времени.

Если скорость постоянна, достаточно операции умножения, но если скорость меняется, то мы должны применить более мощный метод вычисления расстояния. Одним из таких методов является приблизительное вычисление путём разбивки времени на отдельные короткие промежутки. Умножая затем время в каждом интервале на какую-либо одну из скоростей в этом интервале и затем суммируя все приблизительные расстояния (сумма Римана), пройденные в каждом интервале, мы получим полное пройденное расстояние. Основная идея состоит в том, что если использовать очень короткие интервалы, то скорость на каждом из них будет оставаться более или менее постоянной. Тем не менее, сумма Римана даёт только приблизительное расстояние. Чтобы найти точное расстояние, мы должны найти предел всех таких сумм Римана.

Если f(x) на диаграмме слева представляет изменение скорости с течением времени, то пройденное расстояние (между моментами a и b) есть площадь заштрихованной области s.

Для приближённой оценки этой площади возможен интуитивный метод, состоящий в разделении расстояния между a и b на некоторое число равных отрезков (сегментов) длиной Δx. Для каждого сегмента мы можем выбрать одно значение функции f(x). Назовём это значение h. Тогда площадь прямоугольника с основанием Δx и высотой h даёт расстояние (время Δx умноженной на скорость h), пройденное в этом сегменте. С каждым сегментом связывается среднее значение функции на нём f(x)=h. Сумма всех таких прямоугольников даёт приближение площади под кривой, которая является оценкой общего пройденного расстояния. Уменьшение Δx даст большее количество прямоугольников и в большинстве случаев будет лучшим приближением, но для получения точного ответа мы должны вычислить предел при Δx стремящемся к нулю.

и читается: «интеграл от a до b функции f от x по x». Предложенное Лейбницем обозначение dx предназначено для разделения площади под кривой на бесконечное число прямоугольников, таких, что их ширина Δx является бесконечно малой величиной dx. В формулировке исчисления, основанного на пределах, обозначение

должно пониматься как оператор, который принимает на входе функцию и даёт на выходе число, равное площади. dx не является числом и не умножается на f(x).

Функции, отличающиеся на константу, имеют те же производные, и, следовательно, первообразная данной функции на самом деле является семейством функций, отличающиеся только константой. Поскольку производная функции y = x² + C, где C — любая константа, равна y′ = 2x, то первообразная последней определяется по формуле:

Неопределённая константа типа C в первообразной известна как постоянная интегрирования.

Теорема Ньютона — Лейбница, которую также называют основной теоремой анализа утверждает, что дифференцирование и интегрирование являются взаимно обратными операциями. Точнее, это касается значения первообразных для определённых интегралов. Поскольку, как правило, легче вычислить первообразную, чем применять формулу определённого интеграла, теорема даёт практический способ вычисления определённых интегралов. Она также может быть интерпретирована как точное утверждение о том, что дифференцирование является обратной операцией интегрирования.

Теорема гласит: если функция f непрерывна на отрезке [a, b] и если F есть функция, производная которой равна f на интервале (a, b), то:

Это понимание, сделанное как Ньютоном, так и Лейбницем, которые основывали свои результаты на более ранних трудах Исаака Барроу, было ключом к быстрому распространению аналитических результатов после того, как их работы стали известны. Фундаментальная теорема даёт алгебраический метод вычисления многих определённых интегралов без ограничения процессов, путём нахождения формулы первообразной. Кроме того, возник прототип для решения дифференциальных уравнений. Дифференциальные уравнения связывают неизвестные функции с их производными, они применяются повсеместно во многих науках.

Математический анализ широко применяется в физике, информатике, статистике, технике, экономике, бизнесе, финансах, медицине, демографии и других областях, в которых для решения проблемы может быть построена математическая модель, и необходимо найти её оптимальное решение.

В частности, практически все понятия в классической механике и электромагнетизме неразрывно связаны между собой именно средствами классического математического анализа. Например, при известном распределении плотности объекта его масса, моменты инерции, а также полная энергия в потенциальном поле могут быть найдены с помощью дифференциального исчисления. Другой яркий пример применения математического анализа в механике — второй закон Ньютона: исторически сложилось так, что в нём напрямую используется термин «скорость изменения» в формулировке «Сила = масса × ускорение», так как ускорение — производная по времени от скорости или вторая производная по времени от траектории или пространственного положения.

Теория электромагнетизма Максвелла и общая теория относительности Эйнштейна также выражаются языком дифференциального исчисления. В химии исчисление используется при определении скорости реакций и скорости радиоактивного распада. В биологии с помощью исчисления делается расчёт динамики популяций, учитывающей данные по воспроизводству и смертности вида.

Математический анализ может использоваться в сочетании с другими математическими дисциплинами. Например, оно может использоваться совместно с линейной алгеброй, чтобы найти «наилучшую» линейную аппроксимацию для множества точек в области определения. Или его можно использовать в теории вероятностей для определения вероятности непрерывной случайной величины в зависимости от плотности распределения. В аналитической геометрии при изучении графиков функций исчисление используется для поиска точек максимума и минимума, наклона, кривизны и точек перегиба.

Теорема Грина, которая устанавливает соотношение между криволинейным интегралом по простой замкнутой кривой С и двойным интегралом по плоской области D, ограниченной этой кривой С, применяется в инструменте, известном как планиметр, который используется для расчёта площади плоской поверхности на чертеже. Например, его можно использовать для расчёта площади фигуры неправильной формы: цветника или бассейна при проектировании своего участка.

Дискретная теорема Грина, устанавливающая соотношение между двойным интегралом функции по периметру прямоугольника и линейной комбинацией значений первообразной по угловым точкам прямоугольника, позволяет быстро вычислить сумму площадей прямоугольных областей. Например, она может использоваться для эффективного расчёта суммы прямоугольных областей на изображениях, для того чтобы быстро находить свойства и идентифицировать объекты.

В области медицины математический анализ применяется для нахождения оптимального угла ветвления кровеносных сосудов, максимизирующего поток. Зная закон затухания применительно к выводу какого-либо препарата из тела, исчисление используется для оценки уровня дозирования этих препаратов. В ядерной медицине исчисление используется для разработки моделей переноса излучения в целевой терапии опухолей.

В экономике средства математического анализа позволяют определить максимальную прибыль с использованием понятий предельных издержек и предельного дохода.

Математический анализ используется также для нахождения приближённых решений уравнений. На практике это стандартный способ решения дифференциальных уравнений и нахождение корней в большинстве приложений. Примерами являются метод Ньютона, метод простой итерации и метод линейной аппроксимации. Например, при расчётах траектории космических аппаратов используется вариант метода Эйлера для аппроксимации криволинейных курсов движения при отсутствии силы тяжести.

На протяжении многих лет в СССР, СНГ и России популярны следующие учебники: