Линейное отображение

Линейный оператор (преобразование) является частным случаем линейного отображения векторного пространства в себя.[1]

Если выполняется только первое свойство, то такое отображение называется аддитивным.

Матрица линейного отображения — матрица, выражающая линейное отображение в некотором базисе. Для того, чтобы её получить, необходимо подействовать отображением на векторы базиса и координаты полученных векторов (образов базисных векторов) записать в столбцы матрицы.

Матрица отображения аналогична координатам вектора. При этом действие отображения на вектор равносильно умножению матрицы на столбец координат этого вектора в том же базисе.

Векторы представлены как матрица 2 x 2, образованная сторонами соответствующего единичного квадрата, трансформируемого в параллелограмм.