Лагранжиан

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от , проверенной 18 декабря 2020; проверки требуют .

Уравнения, полученные посредством приравнивания нулю функциональной производной функционала по всем направлениям, идентичны обычным уравнениям Эйлера — Лагранжа. Динамические системы, чьи уравнения могут быть получены посредством принципа наименьшего действия для удобно выбранной функции Лагранжа, известны как лагранжевы динамические системы.

Примеров лагранжевых динамических систем много, начиная с классической версии Стандартной модели в физике элементарных частиц и заканчивая уравнениями Ньютона в классической механике (см. Лагранжева механика). Также к этой области относятся чисто математические проблемы, такие как задача нахождения уравнений геодезических и проблема Плато.

Через преобразование Лежандра лагранжиан связан с гамильтонианом (в котором за основу берутся импульсы). На гамильтониане основана гамильтонова формулировка классической механики.

Понятие функции Лагранжа было первоначально введено для переформулировки классической механики в виде, известном как лагранжева механика. В этом контексте функция Лагранжа обычно берётся в виде разности кинетической и потенциальной энергии механической системы.

Пусть размерность пространства равна трём и функция Лагранжа записана в виде

Для трёхмерной системы со сферическими координатами r, θ, φ с лагранжианом

Из этого лагранжиана следует классическая динамика релятивистских частиц (релятивистская динамика).

Тогда лагранжиан — это интеграл по пространственным переменным от плотности лагранжиана.

В этом разделе речь идёт о чисто классической (не квантовой) электродинамике (квантовоэлектродинамический лагранжиан описан в следующих разделах), в особенности сказанное касается заряженного вещества, с которым взаимодействует электромагнитное поле — то есть и члена взаимодействия, и лагранжиана собственно вещества (лагранжиан же свободного электромагнитного поля в целом один и тот же в классической и квантовой теории).

Электростатика — физика статических (то есть постоянных) электрических полей, которые можно (приближенно или точно) описать скалярным[1] потенциалом, и достаточно медленно движущегося заряженного вещества, подчиняющегося таким образом ньютоновской механике.

(Тот и другой вид оказывается полезно выписать отдельно, хотя, конечно, они друг к другу сводятся, если использовать дельта-функцию). Энергия поля входит в член кинетической энергии наряду с кинетической энергией частиц[2], записываясь как:

Таким образом, лагранжиан электростатики, включающий в себя и кинетическую энергию (медленного) движения заряженных частиц, таков:

Проварьировав действие с описанным в этом параграфе лагранжианом[3], легко получить уравнение поля для электростатики (уравнение Пуассона):

и уравнение движения частицы в электростатическом поле (в целом совпадающее с полученным в примере для классической частицы в начале статьи):

В случае электродинамики приходится пользоваться уже не классической потенциальной энергией, а обобщённой (зависящей и от скоростей) потенциальной энергией (энергией взаимодействия):

Энергия электромагнитного поля также должна включать по сравнению со случаем электростатики ещё и энергию магнитного поля[4]:

Как и в случае электростатики, при необходимости к этому лагранжиану могут быть дописаны дополнительные члены, описывающие неэлектромагнитные силы, другие поля и т. д., что, впрочем, выходит за рамки задачи описания электромагнитного лагранжиана. Строго говоря, выписывание кинетической энергии вещества тоже выходит за эти рамки, однако мы выписали его, чтобы описание сохраняло целостность.

Однако проще и короче всего такой вывод получается в четырёхмерной формулировке (см. далее).

В четырёхмерной формулировке плотность лагранжиана электромагнитного поля, его взаимодействия с заряженным веществом и (для полноты картины) самого вещества выглядит так (при использовании системы единиц c = 1):

Второй член (описывающий взаимодействие) можно переписать так, что соответствующее действие будет:

Лагранжиан квантовой теории поля (КТП) в принципе совпадает с классическим, за исключением случаев, когда для некоторой части полевых переменных затруднительно ввести классические аналоги или корректно проинтерпретировать их; впрочем, и тогда обычно можно, хотя бы чисто формально, получить то, что называется классическими уравнениями движения, использовав вместо той или иной процедуры квантования поля с данным лагранжианом приближение стационарной фазы (стационарного действия) — то есть найдя классическое приближение описания системы.

Таким образом, лагранжианы, выписанные ниже, не являются в определённом смысле специфичными только для квантовой теории соответствующих полей; тем не менее они используются в КТП, представляя в определённом отношении её основу.

Необходимое и достаточное условие существования и единственности уравнения Лагранжа