Лагранжева механика

Это значительно упрощает множество физических задач. Например, рассмотрим бусинку на обруче. Если вычислять движение, используя второй закон Ньютона, то нужно записать сложный набор уравнений, принимающих во внимание все силы, действующие на обруч со стороны бусинки в каждый момент времени. С использованием лагранжевой механики решение той же самой задачи становится намного проще. Нужно рассмотреть все возможные движения бусинки по обручу и математически найти то, которое минимизирует действие. Здесь меньше уравнений, так как не надо непосредственно вычислять влияние обруча на бусинку в данный момент. Правда, в данной задаче уравнение всего одно, и его можно получить также из закона сохранения механической энергии.

Нужно соблюдать осторожность и помнить, что из равенства нулю первой вариации действия следует лишь его стационарность, но не минимальность действия. Легко заметить, что максимального значения функционал действия в классической механике принимать не может, так как частица может пройти тот же самый путь с большей скоростью, при этом её кинетическая энергия на всём пути будет больше, а потенциальная энергия не изменится, то есть действие не ограничено сверху (если не накладывать ограничений на скорости). Однако две точки могут соединяться несколькими путями, на которых действие принимает стационарное значение. Простейший пример — свободное движение точки по сфере, при котором существует бесконечно много равноправных способов попасть в диаметрально противоположную точку. Возможны более сложные случаи, когда точки соединяются несколькими прямыми путями, но значение действия на них различно.

В буквальном смысле принцип наименьшего действия справедлив лишь локально. А именно, имеет место

Лагранжиан системы определяется с точностью до полной производной по времени от произвольной функции координат и времени. Добавление такой функции в лагранжиан не влияет на вид уравнений движения.

Принципиально важная особенность лагранжиана — аддитивность для невзаимодействующих систем — лагранжиан совокупности невзаимодействующих систем равен сумме их лагранжианов. Другой важный принцип классической механики — принцип относительности Галилея — одинаковость законов в разных инерциальных системах. Кроме этого используются общие предположения однородности и изотропности пространства и однородности времени. Эти принципы означают инвариантность (с точностью до указанной неопределённости) лагранжиана относительно тех или иных преобразований.

Из аддитивности лагранжиана следует, что для системы невзаимодействующих частиц лагранжиан будет равен

В случае замкнутой системы взаимодействующих частиц к данному лагранжиану следует добавить функцию координат (а иногда и скоростей), которая зависит от характера взаимодействия

Аналогичный вид имеет лагранжиан открытой системы во внешнем поле. В этом случае функции координат и скоростей поля считаются заданными, поэтому кинетическую часть лагранжиана поля можно не принимать во внимание как функцию только времени. Поэтому лагранжиан большой системы (включающей внешнее поле) описывается лагранжианом данной системы плюс функция поля от координат и скоростей системы, а также, возможно времени.

Однородность и изотропность пространства и времени приводят к наиболее часто используемым законам сохранения — т. н. аддитивным интегралам движения.

Из однородности времени следует, что лагранжиан не зависит от времени непосредственно, следовательно

называемая энергией системы не изменяется со временем. Это закон сохранения энергии.

Учитывая вид лагранжиана для замкнутой или находящейся во внешнем поле системы равна

Таким образом, энергия системы складывается из двух компонент — кинетической энергии и потенциальной.

Однородность пространства означает инвариантность лагранжиана относительно параллельных переносов. Имеем для вариации лагранжиана

Данное соотношение с учётом введённого понятия обобщённой силы означает, что векторная сумма сил равна нулю (в частном случае двух тел — действие равно противодействию — третий закон Ньютона).

являющееся векторной величиной, называемой импульсом, сохраняется во времени. Это закон сохранения импульса.

Закон сохранения импульса системы частиц может быть сформулирован как равномерность и прямолинейность движения центра тяжести системы.

Подставляя сюда выражения для изменений радиус-вектора и вектора скорости получаем:

сохраняется. Эта величина и называется моментом импульса или просто моментом.

Перепишем это уравнение в терминах обобщённых координат и скоростей. С правой стороны равенства,

Левая сторона равенства более сложна, но после некоторых перестановок мы получим:

Это дифференциальное уравнение известно из уравнений движения Ньютона и имеет решение

Эти уравнения можно также получить, продифференцировав по времени закон сохранения механической энергии и закон сохранения момента импульса.

Базовый постулат теории относительности — постоянство скорости света во всех инерциальных системах приводит к инвариантной величине, называемой интервалом s, являющимся специфической метрикой в четырёхмерном пространстве-времени:

Следовательно, если принять лагранжиан релятивистской частицы пропорциональным подынтегральной функции от скорости, то указанный интеграл будет инвариантным относительно инерциальных систем действием.

Из соображений совпадения с классической механикой при малых скоростях лагранжиан свободной релятивистской частицы в инерциальной системе в конечном итоге равен

Видно, что даже при нулевой скорости частица обладает энергией (в отличие от классической механики), которую называют энергией покоя.

Отсюда несложно получить релятивистское соотношение между энергией и импульсом

В теории поля сумма лагранжианов частиц механической системы заменяется интегралом по некоторому объёму пространства от так называемой лагранжевой плотности (в теории поля лагранжеву плотность иногда и называют лагранжианом):

где в последней формуле предполагается интегрирование по четырёхмерному пространству-времени.

Предполагается, что лагранжева плотность не зависит непосредственно от координат, а зависит от полевой функции и её первых производных. Уравнения Эйлера-Лагранжа в данном случае имеют вид: