Конечномерное пространство

Коне́чноме́рное простра́нство — это векторное пространство, в котором имеется конечный базис — порождающая (полная) линейно независимая система векторов. Другими словами, в таком пространстве существует конечная линейно независимая система векторов, линейной комбинацией которых можно представить любой вектор данного пространства.

Базис — это (одновременно) и минимальная порождающая (полная) система, и максимальная линейно независимая система векторов. Все базисы содержат одно и то же количество элементов, которое называется размерностью векторного пространства.

Конечномерное пространство, в котором введено скалярное произведение его элементов называется евклидовым. Конечномерное пространство, в котором введена норма его элементов называется конечномерным нормированным. Наличие скалярного произведения или нормы порождает в конечномерном пространстве метрику.

Также любой базис в евклидовом пространстве можно сделать ортонормированным при помощи ортогонализации Шмидта.