Ковариантность и контравариантность (математика)

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от , проверенной 8 марта 2020; проверки требует .

Ковариа́нтность и контравариа́нтность — используемые в математике (линейной алгебре, дифференциальной геометрии, тензорном анализе) и в физике понятия, характеризующие то, как тензоры (скаляры, векторы, операторы, билинейные формы и т. д.) изменяются при преобразованиях базисов в соответствующих пространствах или многообразиях. Контравариантными называют «обычные» компоненты, которые при смене базиса пространства изменяются с помощью преобразования, обратного преобразованию базиса. Ковариантными — те, которые изменяются так же, как и базис.

Связь между ковариантными и контравариантными координатами тензора возможна только в пространствах, где задан метрический тензор (не следует путать с метрическим пространством).

Термины ковариантность и контравариантность были введены Сильвестром в 1853 году для исследований по алгебраической теории инвариантов.

Сказанное про контравариантность и ковариантность векторов можно обобщить на объекты с несколькими индексами — тензоры, частными случаями которых и являются векторы и ковекторы.

Вообще, необходимо понимать, что сам объект от представления его в базисе не зависит. Все преобразования — это представления одного и того же объекта (тензора).

Нередко ковариантным вектором, особенно в физической литературе, называют разложение любого вектора (то есть вектора или ковектора, вектора касательного или кокасательного пространства) по дуальному базису. Тогда речь идет о наборе ковариантных координат любого объекта, обычно, однако, каждый тип объектов стараются записывать в естественном для него базисе, что соответствует основному определению.

В искривлённом пространстве могут и не существовать ортогональные и вообще линейные координатные базисы. В общем случае приходится иметь дело именно с криволинейными базисами. В этом случае применение всего вышеуказанного формализма ковариантных и контравариантных векторов приобретает не просто особую важность, а становится неизбежным.

А для 1 раз контравариантного и 1 раз ковариантного тензора преобразования имеют вид:

Обычно для указания, что компоненты тензора преобразованы к новому базису со штрихом, штрих указывают у соответствующих индексов тензора, а не у его буквенного обозначения, в таком случае вышеуказанные формулы записывают так

В теории категорий, функторы могут быть ковариантными и контравариантными. Сопряжённое пространство векторного пространства — стандартный пример контравариантного функтора. Некоторые конструкции мультилинейной алгебры являются смешанными, и не являются функторами.

В геометрии то же самое отображение различается в или из пространства, что позволяет определить вариантность конструкции. Касательный вектор к гладкому многообразию M в точке P — это класс эквивалентности кривых в M, проходящих через данную точку P. Поэтому он контравариантен относительно гладкого отображения M. Ковариантный вектор, или ковектор, таким же способом конструируется из гладкого отображения из M на вещественную ось около P в кокасательном расслоении, построенном на сопряжённом пространстве касательного расслоения.

Ковариантные и контравариантные компоненты преобразуются разными способами при преобразованиях базисов и, соответственно, координат, если брать, как это делают обычно, координатные базисы. .