Кинетическое уравнение Больцмана
Уравне́ние Бо́льцмана (кинети́ческое уравнение Больцмана) — уравнение, названное по имени Людвига Больцмана, который его впервые рассмотрел, и описывающее статистическое распределение частиц в газе или жидкости. Является одним из самых важных уравнений физической кинетики (области статистической физики, которая описывает системы, далёкие от термодинамического равновесия, например, в присутствии градиентов температур и электрического поля). Уравнение Больцмана используется для изучения переноса тепла и электрического заряда в жидкостях и газах, и из него выводятся транспортные свойства, такие как электропроводность, эффект Холла, вязкость и теплопроводность. Уравнение применимо для разрежённых систем, где время взаимодействия между частицами мало (гипотеза молекулярного хаоса).
В гамильтоновой механике уравнение Больцмана часто записывается в более общем виде
В случае квантового характера статистики частиц это выражение осложняется невозможностью двум частицам находиться в состоянии с одинаковыми квантовыми числами, а поэтому нужно учитывать невозможность рассеяния в занятые состояния.
Уравнение Больцмана — сложное интегро-дифференциальное уравнение в частных производных. Кроме того, интеграл столкновений зависит от конкретной системы, от типа взаимодействия между частицами и других факторов. Нахождение общих характеристик неравновесных процессов — непростое дело. Однако известно, что в состоянии термодинамического равновесия интеграл столкновений равен нулю. Действительно, в состоянии равновесия в однородной системе при отсутствии внешних полей все производные в левой части уравнения Больцмана равны нулю, поэтому интеграл столкновений тоже должен равняться нулю. При малых отклонениях от равновесия функцию распределения можно представить в виде
Уравнениe Больцмана в приближении времени релаксации записывается в виде
Микроскопический вывод уравнения Больцмана из первых принципов (исходя из точного уравнения Лиувилля для всех частиц среды) производится путём обрыва цепочки уравнений Боголюбова на уровне парной корреляционной функции для классических[1] и квантовых[2] систем. Учёт в цепочке кинетических уравнений корреляционных функций более высокого порядка позволяет находить поправки к уравнению Больцмана[3].