Квантовая электродинамика

Ква́нтовая электродина́мика (КЭД) — квантовополевая теория электромагнитных взаимодействий; наиболее разработанная часть квантовой теории поля. Классическая электродинамика учитывает только непрерывные свойства электромагнитного поля, в основе же квантовой электродинамики лежит представление о том, что электромагнитное поле обладает также и прерывными (дискретными) свойствами, носителями которых являются кванты поля — фотоны. Взаимодействие электромагнитного излучения с заряженными частицами рассматривается в квантовой электродинамике как поглощение и испускание частицами фотонов.

Квантовая электродинамика количественно объясняет эффекты взаимодействия излучения с веществом (испускание, поглощение и рассеяние), а также последовательно описывает электромагнитные взаимодействия между заряженными частицами. К числу важнейших проблем, которые не нашли объяснения в классической электродинамике, но успешно разрешаются квантовой электродинамикой, относятся тепловое излучение тел, рассеяние рентгеновских лучей на свободных (точнее, слабо связанных) электронах (эффект Комптона), излучение и поглощение фотонов атомами и более сложными системами, испускание фотонов при рассеянии быстрых электронов во внешних полях (тормозное излучение) и другие процессы взаимодействия электронов, позитронов и фотонов. Меньший успех теории при рассмотрении процессов с участием других частиц обусловлен тем, что в этих процессах, кроме электромагнитных взаимодействий, играют важную роль и другие фундаментальные взаимодействия (сильное и слабое).

Квантовая электродинамика как последовательная квантовая теория поля была создана в 1940-х годах в работах Фейнмана, Швингера, Томонаги, Дайсона. Это была первая перенормируемая теория поля.

Математически, КЭД — это абелева калибровочная теория поля с группой симметрии U(1). Калибровочное поле, которое переносит взаимодействие между заряженными полями спина 1/2, является электромагнитным полем.

Лагранжиан КЭД для поля спина 1/2 (электрон-позитронного поля), взаимодействующего с электромагнитным полем, равен сумме лагранжианов электрон-позитронного поля, фотонного поля и слагаемого, описывающего взаимодействие электромагнитного поля с электрон-позитронным полем. Последнее слагаемое, однако, часто объединяют с первым, используя так называемую обобщённую ковариантную производную:

Требование локальности взаимодействия между частицами в квантовой электродинамике приводит к тому, что интегралы по пространству, описывающие процессы взаимодействия частиц, оказываются расходящимися за счет больших импульсов виртуальных частиц. Это свидетельствует о неприменимости принятых в квантовой электродинамике методов описания взаимодействий на малых расстояниях.[10]