Квантовая теория поля

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от , проверенной 17 ноября 2020; проверки требуют .

Ква́нтовая тео́рия по́ля (КТП) — раздел физики, изучающий поведение квантовых систем с бесконечно большим числом степеней свободы — квантовых (или квантованных) полей; является теоретической основой описания микрочастиц, их взаимодействий и превращений. Именно на квантовой теории поля базируется вся физика высоких энергий, физика элементарных частиц и физика конденсированного состояния. Квантовая теория поля в виде Стандартной модели (с добавкой масс нейтрино) сейчас является единственной экспериментально подтверждённой теорией, способной описать и предсказать поведение элементарных частиц при высоких энергиях (то есть при энергиях, существенно превышающих их энергию покоя).

Математический аппарат КТП — гильбертово пространство состояний (пространство Фока) квантового поля и действующие в нём операторы. В отличие от квантовой механики, «частицы» как некие неуничтожимые элементарные объекты в КТП отсутствуют. Вместо этого основные объекты здесь — векторы фоковского пространства, описывающие всевозможные возбуждения квантового поля. Аналогом квантовомеханической волновой функции в КТП является полевой оператор (точнее, «поле» — это операторнозначная обобщённая функция, из которой только после свёртки с основной функцией получается оператор, действующий в гильбертовом пространстве состояний), способный действовать на вакуумный вектор фоковского пространства (см. вакуум) и порождать одночастичные возбуждения квантового поля. Физическим наблюдаемым объектам здесь также соответствуют операторы, составленные из полевых операторов.

При построении квантовой теории поля ключевым моментом было понимание сущности явления перенормировки.

Несколько иной подход был реализован в 1928 году Дираком. Дирак пытался получить дифференциальное уравнение первого порядка, в котором обеспечено равноправие временной координаты и пространственных координат. Поскольку оператор импульса пропорционален первой производной по координатам, то гамильтониан Дирака должен быть линейным по оператору импульса. С учётом того же релятивистского соотношения энергии и импульса на квадрат этого оператора налагаются ограничения. Соответственно и линейные «коэффициенты» также должны удовлетворять определённому ограничению, а именно: их квадраты должны быть равны единице и они должны быть взаимно антикоммутативны. Таким образом, это точно не могут быть числовые коэффициенты. Однако они могут быть матрицами, причём размерности не менее 4, а «волновая функция» — четырёхкомпонентным объектом, получившим название биспинора. В результате было получено уравнение Дирака, в котором участвуют т. н. 4-матрицы Дирака и четырёхкомпонентная «волновая функция». Формально уравнение Дирака записывается в виде, аналогичном уравнению Шрёдингера с гамильтонианом Дирака. Однако данное уравнение (впрочем, как и уравнение Клейна — Гордона) имеет решения с отрицательными энергиями. Данное обстоятельство явилось причиной для предсказания античастиц, что позже и было подтверждено экспериментально (открытие позитрона). Наличие античастиц есть следствие релятивистского соотношения между энергией и импульсом.

Таким образом, переход к релятивистски инвариантным уравнениям приводит к нестандартным волновым функциям и многочастичным интерпретациям. Одновременно к концу 20-х годов был разработан формализм квантового описания многочастичных систем (включая системы с переменным числом частиц), основанного на операторах рождения и уничтожения частиц. Квантовая теория поля оказывается также основанной на этих операторах (выражается через них).

Релятивистские уравнения Клейна-Гордона и Дирака рассматриваются в квантовой теории поля как уравнения для операторных полевых функций. Соответственно вводится в рассмотрение «новое» гильбертово пространство состояний системы квантовых полей, на которые действуют указанные полевые операторы. Поэтому иногда процедуру квантования полей называют «вторичным квантованием».

где жирным выделены пространственные компоненты 4-вектора координат, а нулевая компонента — время.

то есть действие в теории поля есть четырёхмерный интеграл от лагранжевой плотности по четырёхмерному пространству-времени. Поэтому в теории поля лагранжианом называют обычно лагранжеву плотность.

Принцип наименьшего действия (принцип Гамильтона) означает, что реальное изменение состояния системы происходит таким образом, чтобы действие было стационарным (вариация действия равна нулю). Этот принцип позволяет получить полевые уравнения движения — уравнения Эйлера-Лагранжа,[1]:

Лагранжиан системы невзаимодействующих (свободных) полей есть просто сумма лагранжианов отдельных полей. Уравнения движения для системы свободных полей — это совокупность уравнений движения отдельных полей.

Введение лагранжиана взаимодействия приводит к неоднородности и нелинейности уравнений движения. Лагранжианы взаимодействия обычно являются полиномиальными функциями участвующих полей (степени не ниже третьей), умноженные на некоторую числовую константу — так называемую константу связи. Лагранжиан взаимодействия может быть пропорционален третьей или четвёртой степени самой полевой функции, произведению различных полевых функций (общая степень должна быть не ниже третьей).

От лагранжева формализма можно перейти к гамильтоновому по аналогии с лагранжевой и гамильтоновой механикой. Полевая функция здесь выступает в качестве обобщённой (канонической) координаты. Соответственно необходимо определить также и обобщённый (канонический) импульс, сопряжённый этой координате согласно стандартной формуле:

Тогда гамильтониан поля (плотность гамильтониана) равен по определению

Соотношения с участием скобок Пуассона обычно и являются основой для квантования полей, когда полевые функции заменяются соответствующими операторами, а скобки Пуассона — на коммутатор операторов.

Симметриями в квантовой теории поля называются преобразования координат и (или) полевых функций, относительно которых инвариантны уравнения движения, а значит, инвариантно действие. Сами преобразования при этом образуют группу. Симметрии называются глобальными, если соответствующие преобразования не зависят от 4-координат. В противном случае говорят о локальных симметриях. Симметрии могут быть дискретными или непрерывными. В последнем случае группа преобразований является непрерывной (топологической), то есть в группе задана топология, относительно которой групповые операции непрерывны. В квантовой теории поля однако обычно используется более узкий класс групп — группы Ли, в которых введена не только топология, но и структура дифференцируемого многообразия. Элементы таких групп можно представить как дифференцируемые (голоморфные или аналитические) функции конечного числа параметров. Группы преобразований обычно рассматриваются в некотором представлении — элементам групп соответствуют операторные (матричные) функции параметров.

Ниже в таблице приведены общие выражения для нётеровских токов и зарядов для основных глобальных симметрий и соответствующих законов сохранения.

Ниже в таблице приведены описание и основные характеристики простейших полей, являющихся базовыми при построении реальных квантово-полевых теорий — скалярные, векторные и спинорные поля.

то есть данный лагранжиан включает лагранжиан свободного спинорного поля Дирака, калибровочного (электромагнитного) поля и лагранжиан взаимодействия этих полей. Аналогичным образом можно написать калибровочно инвариантный лагранжиан комплексного скалярного поля — лагранжиан скалярной КЭД.

Указанный подход можно обобщить на случай других локальных групп симметрии. В общем случае это приводит к появлению так называемых калибровочных полей Янга-Миллса. Ковариантная производная в этом случае имеет вид:

Для решения уравнений движения можно перейти к так называемому импульсному представлению с помощью преобразования Фурье:

Нахождение решения уравнений движения можно показать на примере уравнения Клейна-Гордона.

Переходя к импульсному представлению, уравнение Клейна-Гордона для Фурье-образа полевой функции будет иметь вид:

Наличие дельта-функции под знаком интеграла означает, что по существу интегрирование осуществляется не по всему 4-мерному импульсному пространству, а лишь по двум полам трёхмерного гиперболоида, определяемого уравнением массовой поверхности. Два знака перед квадратным корнем определяют два независимых решения, с помощью которых полевая функция разделяется на две компоненты (каждая в отдельности релятивистки инвариантна)

Используя импульсное представление полевых функций, можно получить и остальные характеристики поля в импульсном представлении. Покажем это на примере 4-импульса для того же вещественного скалярного поля Клейна-Гордона.

Аналогично гамильтониану можно получить аналогичное выражение и для других компонент 4-вектора импульса. В итоге получаем общее выражение для 4-импульса:

Первое выражение оказывается нужным при квантовании - когда порядок перемножения играет роль в силу некоммутативности операторов в общем случае.

Квантование означает переход от полей (полевых функций) к соответствующим операторам (операторнозначным функциям), действующим на вектор (амплитуду) состояния Φ. По аналогии с обычной квантовой механикой вектор состояния полностью характеризует физическое состояние системы квантованных волновых полей. Вектор состояния — это вектор в некотором линейном пространстве, которое называется пространством Фока.

Основной постулат квантования волновых полей заключается в том, что операторы динамических переменных выражаются через операторы полей таким же образом, как и классическое выражение этих величин через полевые функции (с учётом порядка перемножения, поскольку умножение операторов в общем случае некоммутативно, в отличие от произведения обычных функций). Скобка Пуассона (см. гамильтонов формализм) заменяется на коммутатор соответствующих операторов. В частности, классический гамильтонов формализм трансформируется в квантовый следующим образом:

Это так называемые коммутационные соотношения Бозе-Эйнштейна, основанные на обычном коммутаторе — разность «прямого» и «обратного» произведения операторов

Коммутационные соотношения Ферми-Дирака основаны на антикоммутаторе — сумма «прямого» и «обратного» произведения операторов:

Кванты первых полей подчиняются статистике Бозе-Эйнштейна и называются бозонами, а кванты вторых подчиняются статистике Ферми-Дирака и называются фермионами. Квантование полей по Бозе-Эйнштейну оказывается непротиворечивым для частиц с целым спином, а для частиц с полуцелым спином непротиворечивым оказывается квантование по Ферми—Дираку. Таким образом, фермионы являются частицами с полуцелым спином, а бозоны — с целым.

Из коммутационных соотношений для полевой функции (обобщённой координаты) и соответствующего обобщённого импульса можно получить коммутационные соотношения для операторов рождения и уничтожения квантов

Поле можно представить в виде бесконечного множества полевых гармонических осцилляторов. Это можно показать на примере поля Клейна-Гордона. Трёхмерный (по трём пространственным координатам) Фурье-образ полевой функции удовлетворяет следующему уравнению (Фурье-образ уравнения Клейна-Гордона)

Такое представление называют представлением чисел заполнения. Суть данного представления заключается в том, чтобы вместо задания вектора состояния как функции от координат (координатное представление) или как функцию от импульсов (импульсное представление), состояние системы характеризуется номером возбуждённого состояния — числом заполнения.

Произвольные состояния задаются как возбуждения вакуума следующего вида:

Нормальная форма, очевидно, связана с обычной через коммутатор операторов, а именно «обычная» форма равна нормальной форме плюс (анти)коммутатор соответствующих операторов («неправильно» упорядоченных). Например,

В этой записи лишь одно слагаемое записано не в нормальной форме, соответственно можно записать

Тем самым, вакуумное среднее от исходного произведения операторов по существу будет определяться только последним коммутатором.

Хронологическое произведение определяется как упорядоченное по временной переменной (нулевой компоненте 4-координат) произведение:

Теорема Вика обобщает данное представление на случай произвольного количества множителей:

Определим явное выражение для вакуумного среднего от произведения полевых операторов скалярного поля Клейна-Гордона с учётом сказанного выше

Коммутаторы полевых операторов с операторами рождения и уничтожения вывести легче. Приведём без вывода эти коммутационные соотношения.

Рассмотрим вакуумное среднее от хронологического произведения двух полевых операторов скалярного поля:

Пропагаторы базовых полей (ненулевыми являются только свертки одинаковых полей противоположных зарядов)

Основана на предположении о нелокальности взаимодействий. Взаимодействия рассматриваемых квантовых полей происходят не в точке, а в области пространства. Это предположение позволяет избежать ультрафиолетовых расходимостей.

Квантовая теория поля может быть обобщена на случай слабоискривлённого пространства-времени[2]. Это позволяет учесть некоторые существенные гравитационные эффекты, хотя и не является последовательной теорией квантовой гравитации. Квантовая теория поля в искривлённом пространстве-времени справедлива в области, где искривление пространства-времени мало по сравнению с планковскими масштабами.