Интегральное исчисление

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от , проверенной 20 марта 2020; проверки требует .

Интегральное исчисление — раздел математического анализа, в котором изучаются понятия интеграла, его свойства и методы вычислений[1].

Площадь прямоугольного треугольника можно посчитать если заметить, что если отложить точно такой же треугольник рядом, то получится прямоугольник. Так как мы удвоили площадь треугольника, то площадь треугольника является половиной площади прямоугольника. Площадь параллелограмма определяется аналогичным, чуть более сложным образом, через площади прямоугольника и треугольника. Площадь многоугольников определяется при помощи площади треугольников.

Если попытаться разбить такую фигуру на «единичные квадратики», то будут оставаться незаполненные «дыры» (как и в случае прямоугольников со сторонами отношение, которых не равно рациональному числу). В таком случае пытаются сделать два покрытия: прямоугольниками «сверху» и «снизу», то есть построить прямоугольники таким образом, чтобы они включали график функции или не включали. Здесь существенным является каким именно образом мы будем разбивать на прямоугольники (см. ниже). Второй момент заключается в том, что если мы будем брать разбиения всё мельче и мельче, то площадь покрытия «сверху» и площадь покрытия «снизу» должны сходиться и сходиться к какому-то конечному значению. Третий момент заключается в том, что площадь покрытия «сверху» и площадь покрытия «снизу» должны сходиться к одному и тому же числу.

Вернёмся к способу разбиения на прямоугольники. Существует как минимум два распространённых способа.

Риман формализовал понятие интеграла, разработанное Ньютоном и Лейбницем, как площади подграфика (фигуры, заключенной между графиком функции и осью абсцисс). Для этого он рассмотрел фигуры, состоящие из нескольких вертикальных прямоугольников и получающиеся при разбиении отрезка (см. рисунок). Если при «размельчении» разбиения существует предел, к которому сходятся площади таких фигур (интегральные суммы), этот предел называется интегралом Римана функции на отрезке. См. подробнее Интеграл Римана.

Идея построения интеграла Лебега состоит в том, что вместо разбиения области определения подынтегральной функции на части и составления потом интегральной суммы из значений функции на этих частях, на интервалы разбивают её область значений, а затем суммируют с соответствующими весами меры прообразов этих интервалов.