Изопериметрическая задача

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от , проверенной 14 ноября 2021 года; проверки требуют .

и это неравенство превращается в равенство тогда и только тогда, когда кривая является окружностью.

Изопериметрическая задача была обобщена многими путями для других неравенств между характеристиками фигур, множеств, многообразий. К изопериметрической задаче относятся также оценки величин физического происхождения (моменты инерции, жёсткость кручения упругой балки, основная частота мембраны, электростатическая ёмкость и др.) через геометрические характеристики. Например, есть обобщения для кривых на поверхностях и на области в пространствах большей размерности.

Возможно, наиболее известным физическим проявлением 3-мерного изопериметрического неравенства является форма капли воды. А именно, капля принимает обычно круглую форму. Поскольку количество воды в капле фиксировано, поверхностное натяжение заставляет каплю принять форму, минимизирующую поверхность капли, а минимальной поверхностью будет сфера.

Если область не выпуклая, «выемку» можно «отразить», что приведёт к увеличению области при сохранении периметра
Вытянутую фигуру можно сделать более округлой, что не изменит периметр, зато увеличит площадь

Штейнер начинает с некоторых геометрических построений, которые легко понять. Например, можно показать, что любая замкнутая кривая, ограничивающая область, не являющуюся полностью выпуклой, можно модифицировать для получения большей площади путём «отражения» вогнутых участков, чтобы они стали выпуклыми. Затем можно показать, что любая замкнутая кривая, не являющаяся полностью симметричной, может быть «наклонена» таким образом, что она будет заключать большую площадь. Единственная фигура, которая полностью выпукла и симметрична, — это окружность, хотя это рассуждение не представляет строгого доказательства (смотрите внешние ссылки).

Для заданной замкнутой кривой изопериметрический коэффициент определяется как отношение площади фигуры к площади круга, имеющего тот же периметр. То есть

и это неравенство превращается в равенство тогда и только тогда, когда кривая является окружностью. Фактически имеется два способа измерить площадь сферической области, но неравенство симметрично для выбора дополнения.

Изопериметрическое неравенство в пространствах более высоких размерностей