Земной эллипсоид

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от , проверенной 18 июля 2020; проверки требуют .

Земной эллипсоид — эллипсоид вращения, размеры которого подбираются при условии наилучшего соответствия фигуре квазигеоида для Земли в целом (общеземной эллипсоид) или отдельных её частей (референц-эллипсоид).

Поверхность геоида нельзя описать какой-либо математической формулой в связи с тем, что массы внутри Земли распределены неравномерно. Поэтому появилась необходимость создать как можно ближе подходящую к поверхности геоида и математически правильную модель поверхности. Выхода из сложившейся ситуации нашли два: заменить уровненную поверхность Земли на сферу определённого радиуса или принять за такую поверхность эллипсоид (фигура, образуемая при вращении эллипса вокруг его малой оси). В последнем случае путём сложных геодезических, гравиметрических и астрономических вычислений было установлено, что элипсоид наиболее точно подходит к математической поверхности геоида.

Размеры земного эллипсоида характеризуются такими величинами, как длины его полуосей a (большая полуось), b (меньшая полуось) и полярным сжатием α = (a — b)/a.

Земной эллипсоид имеет три основных параметра, любые два из которых однозначно определяют его фигуру:

Для практической реализации земной эллипсоид необходимо ориентировать в теле Земли. При этом выдвигается общее условие: ориентирование должно быть выполнено таким образом, чтобы разности астрономических и геодезических координат были минимальными.

Референц-эллипсоид — приближение формы поверхности Земли (а точнее, геоида) эллипсоидом вращения, используемое для нужд геодезии на некотором участке земной поверхности (территории отдельной страны или нескольких стран). Фигура референц-эллипсоида — это математическая модель поверхности, наилучшим образом подходящая для ограниченной (локальной) территории, определяется длинами полуосей, полярным сжатием эллипсоида и правильным ориентированием в теле Земли.

Как правило, референц-эллипсоиды принимаются для обработки геодезических измерений как наиболее приближенная плоская модель. Практически все референц-эллипсоиды неразрывно связанны с плоскими геодезическими системами координат и являются средствами обеспечения единства измерений. Для закрепления референц-эллипсоида в теле Земли необходимо задать геодезические координаты B0, L0, H0 начального пункта геодезической сети и начальный азимут A0 на соседний пункт. Совокупность этих величин называется исходными геодезическими датами. Таким образом, референц-эллипсоид является переходным моментом между плоскими и сферическими системами координат. С развитием спутниковых систем навигации необходимость в переходном элементе отпала, однако проблема обеспечения единства измерений пока остается актуальной.

Ориентирование референц-эллипсоида в теле Земли подчиняется следующим требованиям:

В России осуществляется переход на общеземной Международный элипсоид ITRF.

Законодательно в СССР, а затем в России с 1946 по 2012 годы использовалось 3 основных системы координат, основанных на эллипсоиде Красовского — СК-42, СК-63 и СК-95. Постановлением Правительства РФ от 24 ноября 2016 г. N 1240 использование СК-42 и СК-95 допускается до 1 января 2021 года[1]. Система координат СК-63, основанная на эллипсоиде Красовского, была отменена Постановлением ЦК КПСС и СМ СССР от 25 марта 1987 г., но в связи с наличием больших архивных фондов пока продолжает использоваться. Вместе с отменой СК-42 и СК-95 вводятся ГСК-2011 и ПЗ-90.11. Таким образом, на территории России будут действовать два эллипсоида и три системы координат: СК-42 (использование не запрещено, обновлению не подлежит), СК-95, основанные на эллипсоиде Красовского, и ГСК-2011, основанная на Международном эллипсоиде. В перспективе ГСК-2011 должна заменить СК-95 и СК-42.

В США общеупотребительной является система координат WGS 84, основанная на Международном эллипсоиде ITRF.

Размеры референц-эллипсоида неоднократно определялись учёными в разные годы:

1841 год — немецкий астроном Фридрих Вильгельм Бессель (его эллипсоид был принят на территории СССР до создания референц-эллипсоида Красовского);

1940 год — советский астроном-геодезист Феодосий Николаевич Красовский и советский геодезист Александр Александрович Изотов (принят на территории СССР в 1946 году).

С середины ХХ века, различными международными организациями, предпринимаются попытки введения общеземного эллипсоида


Общеземной эллипсоид должен быть ориентирован в теле Земли согласно следующим требованиям:

При ориентировании общеземного эллипсоида в теле Земли (в отличие от референц-эллипсоида) нет необходимости вводить исходные геодезические даты.

Поскольку требования к общеземным эллипсоидам на практике удовлетворяются с некоторыми допусками, а выполнение последнего (3) в полном объёме невозможно, то в геодезии и смежных науках могут использоваться различные реализации эллипсоида, параметры которых очень близки, но не совпадают (см. ниже).