Диполь (электродинамика)

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от , проверенной 19 декабря 2020; проверки требуют .

Дипо́ль — идеализированная система, служащая для приближённого описания поля, создаваемого более сложными системами зарядов, а также для приближенного описания действия внешнего поля на такие системы.

Магнитное поле Земли примерно совпадает с полем диполя. Однако «N» и «S» (северный и южный) полюса отмечены «географически», то есть противоположно принятому обозначению для полюсов магнитного диполя.

Типичный и стандартный пример диполя — два заряда, равных по величине и противоположных по знаку, находящихся друг от друга на расстоянии, очень малом по сравнению с расстоянием до точки наблюдения. Поле такой системы полностью описывается дипольным приближением при стремлении расстояния между зарядами к нулю при сохранении произведения величины заряда на расстояния между ними — постоянным (или стремящимся к конечному пределу; эта константа или этот предел будет дипольным моментом такой системы).

Дипольное приближение, выполнение которого обычно подразумевается, когда говорится о поле диполя, основано на разложении потенциалов поля в ряд по степеням радиус-вектора, характеризующего положение зарядов-источников, и отбрасывании всех членов выше первого порядка[1].
Полученные функции будут эффективно описывать поле в случае, если:

Электрический диполь — идеализированная электронейтральная система, состоящая из точечных и равных по абсолютной величине положительного и отрицательного электрических зарядов.

Другими словами, электрический диполь представляет собой совокупность двух равных по абсолютной величине разноимённых точечных зарядов, находящихся на некотором расстоянии друг от друга.

Дипольное приближение для электростатического поля не-нейтральной системы

Не электрически нейтральная система очевидным образом может быть представлена как сумма (суперпозиция) электрически нейтральной системы и точечного заряда. Для этого достаточно поместить куда-то внутрь системы точечный заряд, противоположный ее суммарному заряду, и в ту же точку еще один точечный заряд, равный ее суммарному заряду. После чего рассматривать первый заряд вместе с остальной системой (ее дипольный момент будет очевидно равен дипольному моменту, вычисленному по формуле, приведенной выше, если за начало координат взять положение добавленного точечного заряда: тогда сам добавленный заряд не войдет в выражение). Второй же точечный заряд даст кулоновское поле.

Этим выражениям можно придать несколько другую форму, если ввести вектор Герца

Указанные формулы можно применять всегда, когда применимо дипольное приближение.