Динамика (физика)

Дина́мика (греч. δύναμις «сила, мощь») — раздел механики, в котором изучаются причины изменения механического движения, тогда как способы описать движение изучает кинематика. В классической механике этими причинами являются силы. Динамика оперирует также такими понятиями, как масса, импульс, момент импульса, энергия[1].

Также динамикой нередко называют, применительно к другим областям физики (например, к теории поля), ту часть рассматриваемой теории, которая более или менее прямо аналогична динамике в механике, противопоставляясь обычно кинематике (к кинематике в таких теориях обычно относят, например, соотношения, получающиеся из преобразований величин при смене системы отсчёта).

Иногда слово динамика применяется в физике и не в описанном смысле, а в более общелитературном: для обозначения просто процессов, развивающихся во времени, зависимости от времени каких-то величин, не обязательно имея в виду конкретный механизм или причину этой зависимости.

Динамика, базирующаяся на законах Ньютона, называется классической динамикой. Классическая динамика описывает движения объектов со скоростями от долей миллиметров в секунду до километров в секунду.

Однако эти методы перестают быть справедливыми для движения объектов очень малых размеров (см. квантовая механика) и при движениях со скоростями, близкими к скорости света (см. релятивистская механика). Такие движения подчиняются другим законам.

С помощью законов динамики изучается также движение сплошной среды, т. е. упруго и пластически деформируемых тел, жидкостей и газов.

В результате применения методов динамики к изучению движения конкретных объектов возник ряд специальных дисциплин: небесная механика, баллистика, динамика корабля, самолёта и т. п.

Исторически деление на прямую и обратную задачу динамики сложилось следующим образом[3].

В классической (ньютоновской) механике масса материальной точки полагается постоянной во времени и независящей от каких-либо особенностей её движения и взаимодействия с другими телами[4][5].

Второй закона Ньютона можно также сформулировать с использованием понятия импульса:

В инерциальных системах отсчёта производная импульса материальной точки по времени равна действующей на него силе[6].

Если при этом рассматриваются взаимодействующие материальные точки, то обе эти силы действуют вдоль прямой, их соединяющей. Это приводит к тому, что суммарный момент импульса системы состоящей из двух материальных точек в процессе взаимодействия остается неизменным. Таким образом, из второго и третьего законов Ньютона могут быть получены законы сохранения импульса и момента импульса

Существование инерциальных систем отсчёта лишь постулируется первым законом Ньютона. Реальные системы отсчёта, связанные, например, с Землёй или с Солнцем, не обладают в полной мере свойством инерциальности в силу их кругового движения. Вообще говоря, экспериментально доказать существование ИСО невозможно, поскольку для этого необходимо наличие свободного тела (тела на которое не действуют никакие силы), а то, что тело является свободным, может быть показано лишь в ИСО. Описание же движения в неинерциальных системах отсчёта, движущихся с ускорением относительно инерциальных, требует введения т. н. фиктивных сил таких как сила инерции, центробежная сила или сила Кориолиса. Эти «силы» не обусловлены взаимодействием тел, то есть по своей природе не являются силами и вводятся лишь для сохранения формы второго закона Ньютона:

Многие законы динамики могут быть описаны исходя не из законов Исаака Ньютона, а из принципа наименьшего действия.

Изучением же условий равновесия механических систем занимается статика.

Наиболее же общие свойства макроскопических систем изучает термодинамика, достижения которой учитываются в механике.