Дебаевская длина

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от , проверенной 24 ноября 2020; проверки требует .

Деба́евская длина (дебаевский радиус) — расстояние, на которое распространяется действие электрического поля отдельного заряда в квазинейтральной среде, содержащей свободные положительно и отрицательно заряженные частицы (плазма, электролиты). Вне сферы радиуса дебаевской длины электрическое поле экранируется в результате поляризации окружающей среды (поэтому это явление ещё называют экранировкой Дебая).

Оно характеризует отношение средней кинетической энергии частиц к средней энергии их кулоновского взаимодействия:

Понятие дебаевской длины введено Петером Дебаем в связи с изучением явлений электролиза.

В результате чего получается линеаризованное уравнение Пуассона — Больцмана

также известное как уравнение Дебая — Хюккеля.[1][2][3][4][5] Второе слагаемое в правой части уравнения исчезает в случае электронейтральности системы. Слагаемое в скобках имеет размерность обратного квадрата длины, что естественным образом приводит нас к определению характерной длины

обычно называемой дебаевским радиусом (или дебаевской длиной). Все типы зарядов вносят положительный вклад в дебаевскую длину вне зависимости от их знака.