Группа Ли

Другими словами, группой Ли называется топологическая группа, если она является параметрической и если функция, задающая закон умножения, является вещественно-аналитичной[1].

Изучение групп Ли было начато независимо Вильгельмом Киллингом и Софусом Ли.

Группы Ли естественно возникают при рассмотрении непрерывных симметрий. Например, движения плоскости образуют группу Ли. Группы Ли являются в смысле богатства структуры лучшими из многообразий и как таковые очень важны в дифференциальной геометрии и топологии. Они также играют важную роль в геометрии, физике, теории дифференциальных уравнений.

Группы Ли классифицируются по своим алгебраическим свойствам (простоте, полупростоте, разрешимости, нильпотентности, абелевости), а также по топологическим свойствам (связности, односвязности и компактности).

Пример иррациональной обмотки тора показывает, что образ группы Ли при гомоморфизме не всегда является подгруппой Ли. Однако прообраз подгруппы Ли при гомоморфизме всегда является подгруппой Ли.

Группы Ли часто выступают как симметрии какой-либо структуры на некотором многообразии, а потому естественно, что изучение действий групп Ли на различных многообразиях является важным разделом теории. Говорят, что группа Ли G действует на гладком многообразии M, если задан гомоморфизм групп a: GDiff M, где Diff M — группа диффеоморфизмов M. Таким образом, каждому элементу g группы G должно соответствовать диффеоморфное преобразование ag многообразия M, причём произведению элементов и взятию обратного элемента отвечают соответственно композиция диффеоморфизмов и обратный диффеоморфизм. Если из контекста ясно, о каком действии идёт речь, то образ ag(m) точки m при диффеоморфизме, определяемом элементом g, обозначается просто gm.

Группа Ли естественно действует на себе левыми и правыми сдвигами, а также сопряжениями. Эти действия традиционно обозначаются l, r и a: