Гравитационно-волновая астрономия

Гравитационно-волновая астрономия — раздел астрономии, изучающий космические объекты путём исследования их гравитационного излучения при помощи регистрации его прямого воздействия на детекторы гравитационных волн[3]. Представляет собой активно развивающуюся область наблюдательной астрономии, использующую гравитационные волны (малейшие искривления пространства-времени, предсказанные общей теорией относительности Эйнштейна) для сбора данных об объектах, таких как нейтронные звезды и черные дыры, о таких событиях, как взрывы сверхновых, и о различных процессах, в том числе свойства ранней Вселенной вскоре после Большого взрыва[3].

Теоретическая база гравитационных волн основана на теории относительности. Впервые они были предсказаны Эйнштейном в 1916 году; их существование следует из общей теории относительности, они фигурируют во всех теориях гравитации, которые подчиняются специальной теории относительности[4]. Косвенные подтверждения их существования впервые появились в 1974 году после измерений двойной звездной системы Халса-Тейлора PSR B1913+16, орбита которой изменялась именно так, как предсказывает теория гравитационных волн[5]. Рассел Халс и Джозеф Тейлор были награждены в 1993 году Нобелевской премией по физике за это открытие[6]. Впоследствии учёные наблюдали за многими пульсарами в двойных системах (включая одну систему двойных пульсаров PSR J0737-3039), и поведение их всех согласовывалось с теорией гравитационных волн[7].

11 февраля 2016 года было объявлено, что LIGO впервые непосредственно наблюдал гравитационные волны в сентябре 2015 года[8][9][10].

За экспериментальное обнаружение гравитационных волн в 2017 году была присуждена Нобелевская премия по физике учёным Барри Бэришу, Кипу Торну и Райнеру Вайссу[11][12].

Частота гравитационных волн обычно очень низка, такие волны достаточно трудно обнаружить. Волны с более высокими частотами возникают при более драматических событиях, благодаря чему они стали первыми наблюдаемыми волнами.

В 2015—2016 годах проект LIGO впервые в истории непосредственно наблюдал гравитационные волны с помощью лазерных интерферометров[13][14]. Детекторы LIGO зарегистрировали гравитационные волны от слияния двух черных дыр звездной массы, что согласовывалось с предсказаниями общей теории относительности. Эти наблюдения показали существование двойных систем чёрных дыр звездной массы и стали первым прямым обнаружением гравитационных волн и первым наблюдением процесса слияния двойной системы чёрных дыр[15]. Это открытие было охарактеризовано как революционное для науки, так как установило возможность использовать гравитационно-волновую астрономию для исследования темной материи и Большого взрыва.

Наблюдением гравитационных волн занимается несколько научных коллабораций. Построена всемирная сеть наземных детекторов, километровых лазерных интерферометров, в том числе: (LIGO), совместный проект Массачусетского технологического института, Калифорнийского технологического института и ученых Научной коллаборации LIGO (англ.) с детекторами в Ливингстоне, штат Луизиана и на месте Хэнфордского комплекса; Virgo, в Европейской гравитационной обсерватории (англ.), в муниципалитете Кашина вблизи Пизы в Италии; GEO600 в Зарштедте, близ Ганновера в Германии, и KAGRA, которым руководит Токийский университет в Камиокской обсерватории (англ.), в подземелье шахты Мозуми в Камиокской части города Хида в префектуре Гифу в Японии. LIGO и Virgo модернизируют в 2016 году. Улучшенный детектор LIGO начал наблюдение в 2015 году и обнаружил гравитационные волны, ещё не достигнув максимума своей чувствительности; ожидается, что улучшенный детектор Virgo начнет наблюдение в 2016 году. Модернизация детектора KAGRA запланирована на 2018 год. GEO600 в настоящее время работает, но его чувствительность делает маловероятным возможность детектирования волн; его основной задачей является испытание технологии.

Также наблюдение гравитационных волн ведется с помощью тайминга массивов пульсаров (англ.). Его применяют три консорциума: EPTA (Европа), (NANOGrav) и PPTA в обсерватории Паркса (Австралия), которые все вместе сотрудничают в рамках IPTA (англ.). Эта технология использует обычные радиотелескопы, но, поскольку они чувствительны к частотам в наногерцовом диапазоне и чувствительность детектора улучшается постепенно, для обнаружения сигнала требуется много лет. Текущие оценки приближаются к ожидаемым для астрофизических источников[16].

В будущем существует возможность применения космических детекторов. Европейское космическое агентство выбрало гравитационно-волновую миссию как миссию L3, с запуском в 2034 году, текущей концепцией является Лазерная Интерферометрическая Космическая Антенна (eLISA)[17]. На стадии разработки находится японский проект DECIGO (англ.) (интерферометр гравитационных волн в децигерцевом диапазоне).

Астрономия традиционно полагалась на электромагнитное излучение, начав с видимого света и с развитием технологий взяв на вооружение другие части электромагнитного спектра, от радиоизлучения и до гамма-лучей. Каждая новая полоса частот давала новый взгляд на Вселенную и предвещала новые открытия[18]. В конце XX века регистрация солнечных нейтрино создала новую отрасль нейтринной астрономии, дающей представление о ранее недоступных исследователям явлениях, таких как внутренние процессы Солнца[19][20]. Так же и гравитационные волны дают ученым новый инструмент проведения астрофизических наблюдений.

Теоретической основой гравитационно-волновой астрономии служит общая теория относительности[21]. Гравитационные волны позволяют получить дополнительную информацию к полученной другими средствами. Комбинируя наблюдения одного события с использованием различных средств, можно получить более полное представление о свойствах источника. Гравитационные волны можно использовать для наблюдения систем невидимых (или которые почти невозможно обнаружить) для любых других средств, например, они предоставляют уникальный метод изучения свойств черных дыр.

Многие системы излучают гравитационные волны, но, для чтобы создать сигнал, который можно обнаружить, источник должен состоять из очень массивных объектов, движущихся со скоростью близкой к скорости света. Основным источником гравитационных волн являются двойные системы из двух компактных объектов. Примеры таких систем:

Гравитационные волны слабо взаимодействуют с веществом. Поэтому их трудно обнаружить и поэтому они могут свободно путешествовать по Вселенной, не поглощаясь и не рассеиваясь как волны электромагнитного излучения. Таким образом, с помощью гравитационных волн можно увидеть центр плотных систем: ядро сверхновой или галактический центр. А также более отдалённые во времени события, чем при использовании электромагнитного излучения, поскольку ранняя Вселенная перед рекомбинацией была непрозрачна для света, но прозрачна для гравитационных волн.

Способность гравитационных волн свободно проходить сквозь вещество также означает, что гравитационно-волновые детекторы, в отличие от обычных телескопов, не ограничены полем зрения, а наблюдают все небо. Однако детекторы имеют узконаправленную чувствительность, из-за чего их, среди прочего, объединяют в сеть детекторов[38].

Космическая инфляция, гипотетический период быстрого расширения Вселенная в первые 10−36 секунд после Большого взрыва, должна была стать источником гравитационных волн; они должны были оставить характерный след в поляризации реликтового излучения[39][40][21]. По измерениям микроволнового излучения можно рассчитать свойства первичных гравитационных волн, и использовать эти данные, чтобы узнать больше о ранней Вселенной.

Как молодая область исследований гравитационно-волновая астрономия находится в стадии становления; тем не менее, в астрофизическом сообществе существует консенсус, что эта отрасль продолжит развиваться и станет неотъемлемой частью многоканальной астрономии XXI века. Гравитационно-волновые наблюдения дополняют наблюдения электромагнитного спектра[41][42]. Эти волны обещают дать информацию, которую невозможно получить через электромагнитные волны. Электромагнитные волны на своем пути искажаются — поглощаются и вновь излучаются, что усложняет процесс получения информации об источнике. Гравитационные волны, напротив, слабо взаимодействуют с веществом, а поэтому не рассеиваются и не поглощаются. Эта особенность позволит астрономам по-новому посмотреть на центр сверхновой, звездную туманность и даже на столкновения галактических ядер.

Наземные детекторы гравитационных волн дали новые данные о фазе орбитального сближения и о слияниях двойных черных дыр звездной массы, и о двойных системах, состоящих из одной такой чёрной дыры и нейтронной звезды (которые также должны вызывать гамма-всплески). Они также могут обнаружить сигналы от коллапса ядра сверхновой и от периодических источников, таких как пульсары с малыми деформациями. Если верна гипотеза о некоторых видах фазовых переходов или о вихревых всплесков от длинных космических струн в очень ранней Вселенной (в космическом времени около 10−25 секунды), то их также можно будет обнаружить[43]. Космические детекторы, такие как LISA, должны будут обнаружить двойные системы белых карликов типа AM Гончих Псов (где происходит аккреция бедного водородом вещества с компактной маломассивной гелиевой звезды на белый карлик), а также смогут наблюдать за слиянием сверхмассивных чёрных дыр и орбитальным сближением небольших объектов (между одной и тысячами солнечных масс) в такие чёрные дыры. LISA будет способна получать сигнал от тех же источников ранней Вселенной, что и наземные детекторы, но на более низких частотах и со значительно большей чувствительностью[44].

Выявление эмитированных гравитационных волн является трудной задачей. Оно включает в себя создание ультрастабильных высококачественных лазеров и детекторов, откалиброванных с чувствительностью не менее 2·10−22 Гц−1/2, как показано на наземном детекторе, GEO600[45]. Кроме того, было показано, что даже в результате крупных астрономических событий, таких как взрывы сверхновых, гравитационные волны могут затухать до чрезвычайно малых вибраций амплитудой с диаметр атома[46].