Волновая функция

Согласно копенгагенской интерпретации квантовой механики плотность вероятности нахождения частицы в данной точке конфигурационного пространства в данный момент времени считается равной квадрату абсолютного значения волновой функции этого состояния в координатном представлении.

Волновая функция — это функция степеней свободы, соответствующая некоторому максимальному набору коммутирующих наблюдаемых. Как только такое представление выбрано, волновая функция может быть получена из квантового состояния.

Для данной системы выбор коммутирующих степеней свободы не является уникальным, и, соответственно, область определения волновой функции также не уникальна. Например, её можно рассматривать как функцию всех координат положения частиц в координатном пространстве или импульсов всех частиц в пространстве импульсов; эти два описания связаны преобразованием Фурье. Некоторые частицы, такие как электроны и фотоны, имеют ненулевой спин, и волновая функция таких частиц включает спин как внутреннюю дискретную степень свободы; также для различных систем могут быть рассмотрены другие дискретные переменные, такие как изоспин. Когда система имеет внутренние степени свободы, волновая функция в каждой точке непрерывных степеней свободы (например, точка в координатном пространстве) присваивает комплексное число для каждого возможного значения дискретных степеней свободы (например, z-компонента спина) — эти значения часто отображаются в виде вектора-столбца (например, 2 × 1 для нерелятивистского электрона со спином.

Согласно принципу суперпозиции в квантовой механике, волновые функции можно складывать и умножать на комплексные числа, чтобы построить новые волновые функции и задать гильбертово пространство. Внутреннее произведение в гильбертовом пространстве между двумя волновыми функциями является мерой перекрытия между соответствующими физическими состояниями и используется в фундаментальной вероятностной интерпретации квантовой механики, правиле Борна, связывающем вероятности переходов со скалярным произведением состояний. Уравнение Шредингера определяет, как волновые функции эволюционируют с течением времени, а волновая функция качественно ведёт себя как другие волны, такие как волны на воде или волны в струне, потому что уравнение Шредингера математически является разновидностью волнового уравнения. Это объясняет название «волновая функция» и приводит к дуальности волна-частица. Однако волновая функция в квантовой механике описывает своего рода физическое явление, все ещё открытое для различных интерпретаций, которое принципиально отличается от такового для классических механических волн[1][2][3][4][5][6][7].

В статистической интерпретации Борна в нерелятивистской квантовой механике[8][9][10], квадрат модуля волновой функции -

это вещественное число, интерпретируемым как плотность вероятности измерения частицы как находящейся в заданном месте или имеющей заданный импульс в заданное время и, возможно, имеющей определённые значения для дискретных степеней свободы. Интеграл этой величины по всем степеням свободы системы должен быть равен 1 в соответствии с вероятностной интерпретацией. Это общее требование, которому должна удовлетворять волновая функция, называется условием нормировки. Поскольку волновая функция имеет комплексные значения, можно измерить только её относительную фазу и относительную величину — её значение, по отдельности, ничего не говорит о величинах или направлениях измеряемых наблюдаемых; необходимо применить квантовые операторы, собственные значения которых соответствуют наборам возможных результатов измерений, к волновой функции ψ и вычислить статистические распределения для измеримых величин.

В 1920-х и 1930-х годах квантовая механика развивалась с использованием математического анализа и линейной алгебры. Анализ в своих работах использовали Луи де Бройль, Эрвин Шредингер и другие, разработавшие «волновую механику». Среди тех, кто применял методы линейной алгебры, были Вернер Гейзенберг, Макс Борн и другие, разработавшие «матричную механику». Впоследствии Шредингер показал, что эти два подхода эквивалентны[14].

В 1926 году Шредингер опубликовал знаменитое волновое уравнение, теперь названное его именем, уравнением Шрёдингера. Это уравнение было основано на классическом законе сохранении энергии, но записано с использованием квантовых операторов и соотношений де Бройля, а его решения представлялись волновыми функциями квантовой системы[15]. Однако никто не знал, как это интерпретировать[16]. Сначала Шрёдингер и другие думали, что волновые функции представляют собой частицы, которые распределены по пространству, причём большая часть частицы находится там, где волновая функция велика[17]. Было показано, что это несовместимо с упругим рассеянием волнового пакета (представляющего собой частицу) от рассеивателя, потому что он распространяется во всех направлениях[8]. Хотя рассеянная частица может рассеяться в любом направлении, она не разбивается на части и не улетает во всех направлениях. В 1926 году Борн представил свою интерпретацию амплитуды вероятности[9][18]. Она связывает вычисления квантовой механики непосредственно с вероятностями наблюдаемыми в эксперименте. Сейчас эта картина принята как часть копенгагенской интерпретации квантовой механики. Существует много других интерпретаций квантовой механики. В 1927 году Хартри и Фок сделали первый шаг в попытке описать волновую функцию для N-частиц и разработали самосогласованую процедуру : итерационный алгоритм для аппроксимации решения многочастичной квантовомеханической задачи. Сейчас это метод известен как метод Хартри — Фока[19]. Определитель и перманент Слейтера (матрицы) были частью метода, предложенного Джоном К. Слейтером.

Шредингер действительно работал с уравнением для волновой функции, которое удовлетворяло релятивистскому закону сохранения энергии, прежде чем он опубликовал нерелятивистскую версию, но отбросил его, поскольку оно предсказывало отрицательные вероятности и отрицательные энергии. В 1927 году Клейн, Гордон и Фок также нашли его, но учли электромагнитное взаимодействие и доказали, что оно Лоренц-инвариантно. Де Бройль также пришёл к тому же уравнению в 1928 году. Это релятивистское волновое уравнение сейчас наиболее широко известно как уравнение Клейна — Гордона[20].

В 1927 году Паули феноменологически нашёл нерелятивистское уравнение для описания частиц со спином 1/2 в электромагнитных полях, которое теперь называется уравнением Паули[21]. Паули обнаружил, что волновая функция не описывалась одной комплексной функцией пространства и времени, а требовалось два комплексных числа, которые соответствуют состояниям фермиона со спином +1/2 и −1/2. Вскоре после этого, в 1928 году, Дирак нашёл уравнение из первого успешного объединения специальной теории относительности и квантовой механики в применении к электрону, которое теперь называется уравнением Дирака. В этом случае волновая функция представляет собой спинор, представленный четырьмя комплексными компонентами[19]: двумя для электрона и двумя для античастицы электрона — позитрона. В нерелятивистском пределе волновая функция Дирака напоминает волновую функцию Паули для электрона. Позже были найдены другие релятивистские волновые уравнения.

Все эти волновые уравнения имеют непреходящее значение. Уравнение Шредингера и уравнение Паули во многих случаях являются превосходными приближениями для релятивистских задач. Их значительно легче решить в практических задачах, чем их релятивистские аналоги.

Уравнение Клейна — Гордона и уравнение Дирака, будучи релятивистскими, не полностью примиряют квантовую механику и специальную теорию относительности. Раздел квантовой механики, где эти уравнения изучаются так же, как уравнение Шредингера, часто называемый релятивистской квантовой механикой, хотя и очень успешен, имеет свои ограничения (см., Например, Лэмбовский сдвиг) и концептуальные проблемы (см., например, море Дирака).

Относительность делает неизбежным то, что количество частиц в системе непостоянно. Для полного согласования нужна квантовая теория поля[22]. В этой теории волновые уравнения и волновые функции также используются, но в несколько ином виде. Основными объектами интереса являются не волновые функции, а скорее операторы, так называемые операторы поля (или просто поля, под которыми понимаются «операторы») в гильбертовом пространстве состояний. Оказывается, исходные релятивистские волновые уравнения и их решения всё ещё необходимы для построения гильбертова пространства. Более того, операторы свободных полей, то есть для невзаимодействующих частиц, во многих случаях формально удовлетворяют тому же уравнению, что и поля (волновые функции).

Таким образом, уравнение Клейна — Гордона (спин 0) и уравнение Дирака (спин 12) в таком виде остаются в теории. Аналоги высших спинов включают уравнение Прока (спин 1), уравнение Рариты — Швингера (спин 32) и, в более общем смысле, уравнения Баргмана – Вигнера. Для безмассовых свободных полей примерами являются уравнения Максвелла свободного поля (спин 1) и уравнение Эйнштейна свободного поля (спин 2) для операторов поля[23]. Все они по сути являются прямым следствием требования лоренц-инвариантности. Их решения должны преобразовываться при преобразовании Лоренца заданным образом, то есть в соответствии с определённым представлением группы Лоренца и, что вместе с некоторыми другими разумными требованиями, например принципом кластерной декомпозиции[24], с учётом причинности достаточно, для модификации уравнения.

Это относится к уравнениям свободного поля, когда взаимодействия не включены. Если доступна плотность лагранжиана (включая взаимодействия), то лагранжев формализм даст уравнение движения на классическом уровне. Это уравнение может быть очень сложным и не поддающимся решению. Любое решение будет относиться к фиксированному числу частиц и не будет учитывать термин «взаимодействие», как понимается в этих теориях, который включает в себя создание и уничтожение частиц, а не внешние потенциалы, как в обычной квантовой теории (первичного квантования).

В теории струн ситуация остаётся аналогичной. Например, волновая функция в импульсном пространстве играет роль коэффициента разложения Фурье в общем состоянии частицы (струны) с импульсом, который чётко не определён[25].

Возможно измерение и разницы фаз волновой функции, например, в опыте Ааронова — Бома.

В общем случае интегрирование должно производиться по всем переменным, от которых волновая функция явно зависит в данном представлении (кроме времени).

Очевидно, что можно говорить и о суперпозиции (сложении) любого числа квантовых состояний, то есть о существовании квантового состояния системы, которое описывается волновой функцией

Вероятностный смысл волновой функции накладывает определённые ограничения, или условия, на волновые функции в задачах квантовой механики. Эти стандартные условия часто называют условиями регулярности волновой функции.

Набор координат, которые выступают в роли аргументов функции, представляет собой полную систему коммутирующих наблюдаемых. В квантовой механике возможно выбрать несколько полных наборов наблюдаемых, поэтому волновая функция одного и того же состояния может быть записана от разных аргументов. Выбранный для записи волновой функции полный набор величин определяет представление волновой функции. Так, возможны координатное представление, импульсное представление, в квантовой теории поля используется вторичное квантование и представление чисел заполнения, или представление Фока, и др.

Если волновая функция, например, электрона в атоме, задана в координатном представлении, то квадрат модуля волновой функции представляет собой плотность вероятности обнаружить электрон в той или иной точке пространства. Если эта же волновая функция задана в импульсном представлении, то квадрат её модуля представляет собой плотность вероятности обнаружить тот или иной импульс.

Волновая функция одного и того же состояния в различных представлениях будет соответствовать выражению одного и того же вектора в разных системах координат. Остальные операции с волновыми функциями также будут иметь аналоги на языке векторов. В волновой механике используется представление, где аргументами пси-функции является полная система непрерывных коммутирующих наблюдаемых, а в матричной используется представление, где аргументами пси-функции является полная система дискретных коммутирующих наблюдаемых. Поэтому функциональная (волновая) и матричная формулировки, очевидно, математически эквивалентны.

Волновая функция представляет собой метод описания чистого состояния квантовомеханической системы. Смешанные квантовые состояния (в квантовой статистике) следует описывать при помощи матрицы плотности.

Всякая волновая функция в координатном представлении может быть разложена по собственным функциям оператора её импульса:

Концепция функциональных пространств естественным образом используется в дискуссии о волновых функциях. Функциональное пространство — это набор функций, обычно с некоторыми определяющими требованиями к функциям (в данном случае они являются квадратично интегрируемыми), иногда с заданной алгебраической структурой на множестве (в данном случае структура векторного пространства со скалярным произведением) вместе с топологией на множестве. Последнее будет использоваться здесь редко, оно необходимо только для получения точного определения того, что означает замкнутое подмножества функционального пространства. Ниже будет сделан вывод, что функциональное пространство волновых функций является гильбертовым пространством. Это наблюдение является основой преобладающей математической формулировкой квантовой механики.

Волновая функция, как элемент функционального пространства, частично характеризуется следующими конкретными и абстрактными описаниями.

Это сходство не случайно. Также следует помнить о различиях между пространствами.

Основные состояния характеризуются набором квантовых чисел. Это набор собственных значений максимального набора коммутирующих наблюдаемых. Физические наблюдаемые представлены линейными операторами, также называемыми наблюдаемыми, в пространстве векторов. Максимальность означает, что в такой набор нельзя добавить никакие другие алгебраически независимые наблюдаемые, которые коммутируют с уже имеющимися. Выбор такого множества можно назвать выбором представления.

Абстрактные состояния являются «абстрактными» только в том смысле, что не даётся произвольный выбор, необходимый для конкретного явного описания. Или другими словами, не было дано никакого выбора максимального набора коммутирующих наблюдаемых. Что аналогично векторному пространству без заданного базиса. Соответственно, волновые функции, соответствующие квантовому состоянию, не уникальны. Эта неоднозначность отражает неоднозначность в выборе максимального набора коммутирующих наблюдаемых. Для одной частицы со спином в одном измерении конкретному состоянию соответствуют две волновые функции Ψ(x, Sz) и Ψ(p, Sy), они обе описывают одно и то же состояние.

Каждый выбор представления следует рассматривать как определение уникального функционального пространства, в котором определены волновые функции, соответствующие этому выбору представления. Это различие лучше всего сохранить, даже если можно будет утверждать, что два таких функциональных пространства математически равны, например, являются набором квадратично интегрируемых функций. Тогда можно думать о функциональных пространствах как о двух различных копиях этого набора.

Имеется дополнительная алгебраическая структура векторных пространств волновых функций и абстрактного пространства состояний.

где Φ и Ψ предполагаются нормированными. Рассмотрим эксперимент по рассеянию. В квантовой теории поля, если Φout описывает состояние в «далёком будущем» («исходящая волна») после прекращения взаимодействий между рассеивающими частицами, и Ψin падающая волна в «далеком прошлом», то величины out, Ψin), где Φout и Ψin изменяются по полному набору падающих и исходящих волн соответственно, называется S-матрицей или матрицей рассеяния. Знание этого, по сути, означает решение имеющейся задачи, по крайней мере, в том, что касается предсказаний. Измеримые величины, такие как скорость распада и сечения рассеяния, вычисляются с помощью S-матрицы[29].

Приведенные выше результаты отражают сущность функциональных пространств, элементами которых являются волновые функции. Однако описание ещё не полное. Существует ещё одно техническое требование к функциональному пространству, а именно требование полноты, которое позволяет брать пределы последовательностей в функциональном пространстве и гарантировать, что, если предел существует, то он является элементом функционального пространства. Полное предгильбертовое пространство называется гильбертовым пространством. Свойство полноты имеет решающее значение для передовых подходов и приложений квантовой механики. Например, существование проекционных операторов или зависит от полноты пространства[30]. Эти проекционные операторы, в свою очередь, необходимы для формулировки и доказательства многих полезных теорем, например, спектральной теоремы. Это не очень важно для вводной части квантовой механики, а технические детали и ссылки можно найти в сносках, подобных следующей[nb 3]. Пространство L2 — это гильбертово пространство, скалярное произведение которого будет представлено ниже. Функциональное пространство в примере на рисунке является подпространством L2. Подпространство гильбертова пространства называется гильбертовым пространством, если оно замкнуто.

Таким образом, набор всех возможных нормированных волновых функций для системы с определённым выбором базиса вместе с нулевым вектором составляют гильбертово пространство.

Не все интересующие функции являются элементами некоторого гильбертова пространства, скажем, L2. Самый яркий пример — набор функций e2πip · xh . Эти плоские волны — решения уравнения Шрёдингера для свободной частицы, но они не нормируемые, следовательно, не принадлежат L2. Но, тем не менее, они являются основополагающими для описания квантовой механики. С их помощью можно выразить функции, которые можно нормализовать с помощью волновых пакетов. В каком-то смысле они являются базисом (но не базисом гильбертова пространства и не базисом Гамеля), в котором могут быть выражены интересующие волновые функции. Существует также другое описание: «нормализация на дельта-функцию», которое часто используется для удобства записи, см. ниже. Сами дельта-функции также не интегрируемы в квадрате.

Приведённое выше описание функционального пространства, содержащего волновые функции, в основном имеют математическую мотивацию. Функциональные пространства из-за полноты в определённом смысле очень велики. Не все функции являются реалистичным описанием какой-либо физической системы. Например, в функциональном пространстве L2 можно найти функцию, которая принимает значение 0 для всех рациональных чисел и -i для иррациональных [0, 1]. Это функция интегрируема с квадратом[nb 4], но вряд ли может представлять собой физическое состояние.

Хотя пространство решений в целом является гильбертовым пространством, существует множество других гильбертовых пространств.

В более общем случае можно рассмотреть все полиномиальные решения уравнений Штурма — Лиувилля второго порядка в контексте гильбертова пространства. К ним относятся многочлены Лежандра и Лагерра, а также многочлены Чебышёва, многочлены Якоби и многочлены Эрмита. Они на самом деле возникают в физических задачах, последние — в гармоническом осцилляторе, и то, что в противном случае представляет собой запутанный лабиринт свойств специальных функций, представляется органичной картиной. Для этого см. Byron & Fuller (1992, Chapter 5) .

Встречаются также конечномерные гильбертовы пространства. Пространство n является гильбертовым пространством размерности n. Внутреннее произведение является стандартным внутреннии произведением для этих пространств. В нём находится «спиновая часть» волновой функции одной частицы.

С большим количеством частиц ситуация более сложная. Необходимо использовать тензорные произведения и теорию представлений задействованных групп симметрии (группы вращения и группы Лоренца соответственно). Дальнейшие трудности возникают в релятивистском случае, если частицы не являются свободными[31]. См. Уравнение Бете — Солпитера. Соответствующие замечания относятся к понятию изоспина, для которого группа симметрии — это SU (2). В моделях ядерных сил шестидесятых годов (которые всё ещё используются сегодня, см. ядерные силы) использовалась группа симметрии SU (3). В этом случае также часть волновых функций, соответствующая внутренним симметриям, находится в некоторых n или подпространствах тензорных произведений таких пространств.

Из-за бесконечномерного характера системы соответствующие математические инструменты являются объектами изучения функционального анализа.

Существует ли волновая функция на самом деле и что она представляет, — вот главные вопросы интерпретации квантовой механики. Многие известные физики предыдущего поколения ломали голову над этой проблемой, например, Шрёдингер, Эйнштейн и Бор. Некоторые выступают за формулировки или варианты копенгагенской интерпретации (например, Бор, Вигнер и фон Нейман), в то время как другие, такие как Уиллер или Джейнс, придерживаются более классического подхода[32] и рассматривают волновую функцию как представление информации в сознании наблюдателя, то есть меры нашего познания реальности. Некоторые, включая Шрёдингера, Бома, Эверетта и других, утверждали, что волновая функция должна иметь объективное физическое существование. Эйнштейн считал, что полное описание физической реальности должно относиться непосредственно к физическому пространству и времени, в отличие от волновой функции, которая относится к абстрактному математическому пространству[33].