Волна

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от , проверенной 11 января 2017; проверки требуют .

Волна — изменение некоторой совокупности физических величин (характеристик некоторого физического поля или материальной среды), которое способно перемещаться, удаляясь от места своего возникновения, или колебаться внутри ограниченных областей пространства[1].

Волновой процесс может иметь самую разную физическую природу: механическую, химическую (реакция Белоусова — Жаботинского, протекающая в автоколебательном режиме каталитического окисления различных восстановителей бромисто-водородной кислотой HBrO3), электромагнитную (электромагнитное излучение), гравитационную (гравитационные волны), спиновую (магнон), плотности вероятности (ток вероятности) и т. д. Как правило, распространение волны сопровождается переносом энергии, но не переносом массы.

Многообразие волновых процессов приводит к тому, что никаких абсолютных общих свойств волн выделить не удаётся[1]. Одним из часто встречающихся признаков волн считается близкодействие, проявляющееся во взаимосвязи возмущений в соседних точках среды или поля, однако в общем случае[уточнить] может отсутствовать и оно[1].

Среди всего многообразия волн выделяют некоторые их простейшие типы, которые возникают во многих физических ситуациях из-за математического сходства описывающих их физических законов[1]. Об этих законах говорят в таком случае как о волновых уравнениях. Для непрерывных систем это обычно дифференциальные уравнения в частных производных в фазовом пространстве системы, для сред часто сводимые к уравнениям, связывающим возмущения в соседних точках через пространственные и временные производные этих возмущений[1]. Важным частным случаем волн являются линейные волны, для которых справедлив принцип суперпозиции.

В основном физические волны не переносят материю, но возможен вариант, где происходит волновой перенос именно материи, а не только энергии. Такие волны способны распространяться сквозь абсолютную пустоту. Примером таких волн может служить нестационарное излучение газа в вакуум, волны вероятности электрона и других частиц, волны горения, волны химической реакции, волны плотности реагентов / транспортных потоков[источник не указан 2813 дней].

Терминология гребня и ложбины волны, как правило, применима к поверхностным волнам на границе двух сред — например, для поверхностных волн на воде. Иногда эту терминологию используют для описания графиков волнового процесса. Для продольных волн используются понятия экстремальных точек волны: точек максимального сжатия и максимального разрежения[2]. При этом в случае механических волн соответствующие элементарные объёмы смещаются из своих положений равновесия к области максимального сжатия или от области максимального разрежения с обеих сторон от волновых поверхностей, проходящих через экстремальные точки волны. Максимума же или минимума достигают только параметры субстанции — например, давление в элементарном объёме, концентрация определённого химического вещества, напряжённость поля, плотность элементов дискретной динамической системы и т. д.

Поскольку волновые процессы обусловлены совместным колебанием элементов динамической системы (осцилляторов, элементарных объёмов), они обладают как свойствами колебаний своих элементов, так и свойствами совокупности этих колебаний.

К первым относится временная периодичность — период T повторения колебаний волнового процесса в некоторой точке пространства,

Ко вторым относится пространственная периодичность — длина волны λ, равная пространственному периоду волнового процесса в окрестности некоторой точки пространства в некоторый момент времени, связанная с волновым числом k= 2π/λ [радиан/м] — скоростью изменения фазы волнового процесса с изменением координаты, «пространственной круговой частотой».

Временная и пространственная периодичности взаимосвязаны. В упрощённом виде для линейных волн эта зависимость имеет следующий вид[3]:

Для сложных процессов с дисперсией и нелинейностью, данная зависимость применима для каждой частоты спектра, в который может быть разложен любой волновой процесс.

Для характеристики интенсивности волнового процесса используют три параметра: амплитуда волнового процесса, плотность энергии волнового процесса и плотность потока энергии (плотность потока мощности).

Имеется множество классификаций волн, различающихся по своей физической природе, по конкретному механизму распространения, по среде распространения и т. п.

По своему характеру волны подразделяются на[источник не указан 3641 день]:

Бегущие волны, как правило, способны удаляться на значительные расстояния от места своего возникновения (по этой причине волны иногда называют «колебанием, оторвавшимся от излучателя»[источник не указан 3641 день]).

Особенности физической среды, в которой распространяются волны, накладывают особенности на характер их распространения, оставляя неизменными базовые волновые свойства. В связи с этим различают следующие основные виды волн:

Также как в случае распространения волн в средах с изломом при анизотропности параметров среды для продольных и поперечных волн, наклонные волны тоже описываются линейными уравнениями, хотя их решения показывают даже срыв колебательного процесса на изломе. Их обычно относят к нелинейным колебательным процессам, хотя по сути они таковыми не являются.

Следует отметить, что в ряде случаев волновые процессы в линиях с сопротивлением могут быть сведены к решению линейного волнового уравнения (системы линейных волновых уравнений для дискретных динамических систем).

В ограниченных в пространстве субстанциях волновым процессам свойственно проявление резонансных эффектов, обусловленных множественным наложением прямых и отражённых от границ волн, что приводит к резкому возрастанию амплитуды волнового процесса. При множественном наложении в области резонанса происходит аддитивное накопление энергии динамической системой вследствие синфазности прямых и обратных волн. Обычно принято считать, что в идеальных динамических системах без диссипации энергии при частоте резонанса амплитуда колебаний становится бесконечной, но это не всегда происходит, поскольку энергия свободных колебаний во многих случаях остаётся конечной. Здесь следует различать особенности возникновения резонансов в динамических системах:

Вынужденные процессы возникают в системе при постоянном динамическом воздействии внешней силы. В этом случае спектр колебаний, возникающих в системе, является непрерывным с возрастанием амплитуды на резонансных частотах.

На графиках мы видим, что при определенной нагрузке графики амплитуды и фазы становятся монотонными (красная линия), что свидетельствует об отсутствии отражения от конца линии, и линия ведёт себя как бесконечная. Вынужденные волновые процессы описываются волновым уравнением (системой уравнений для динамических систем с сосредоточенными параметрами) с правой частью, в которую подставляется значение воздействующей внешней силы. В математике такого типа уравнения называются неоднородными, а их решения называют частными решениями[6]

Свободные колебания являются результатом последействия после окончания воздействия внешнего возмущения. Для этих волновых процессов характерен дискретный спектр, соответствующий частотам внутренних резонансов динамической системы. Данные колебания описываются волновым уравнением (системой уравнений) с нулевой правой частью. В математике такого типа дифференциальные уравнения называют однородными, а их решения — общими. Для нахождения постоянных интегрирования в данном случае требуется знание ненулевых параметров колебания хотя бы в одной точке динамической системы. При нулевом отклонении параметров всей системы (отсутствии предварительного возмущения) общее решение уравнения будет обращаться в ноль. При этом частное решение может быть и ненулевым. Таким образом, общее и частное решение волнового уравнения описывают различные процессы, возникающие в динамической системе. Частное решение описывает реакцию на непосредственное воздействие на систему, а общее решение — последействие системы при окончании воздействия на неё.

При предельном переходе к динамической системе с распределёнными параметрами в идеальном случае амплитуды возрастают до бесконечности. В линиях с сопротивлением, амплитуды резонансов в любом случае конечны. Величина сопротивления/вязкости влияет как на амплитуды резонансов, уменьшая их, так и смещает частоты резонансов.

Если волновое сопротивление границы (в динамических системах с сосредоточенными параметрами) носит комплексный характер, то при определённых значениях такого сопротивления в динамической системе происходит резкое смещение резонансных частот.

Динамические системы с сосредоточенными параметрами можно рассматривать как динамические системы с распределёнными параметрами при условии:

Диаграммы вынужденных колебаний в конечной однородной упругой линии с незакрепленными концами при воздействии внешней силы на внутренние элементы линии.

Причём указанная особенность проявляется и в апериодическом режиме колебаний.

При распространении волн изменения их амплитуды и скорости в пространстве и появление дополнительных гармоник зависят от свойств анизотропности среды, сквозь которую проходят волны, границ, а также характера излучения источников волн.

Чаще волны в некоторой среде затухают, что связано с диссипативными процессами внутри среды. Но в случае некоторых специальным образом подготовленных метастабильных сред амплитуда волны может, наоборот, усиливаться (пример: генерация лазерного излучения). Наличие в среде резонансных подструктур обусловливает и появление кратковременного и длительного послесвечения.

На практике монохроматические волны встречаются очень редко. Максимально приближаются к монохроматическому излучение лазера, мазера, радиоантенны. Условием монохроматичности является удалённость области рассмотрения от переднего фронта волны, а также характер излучения источника. Если источник некогерентный, излучение состоит из наложения большого числа отрезков волн. Для описания когерентности сигнала вводится понятие время когерентности и длина когерентности[7].

Учитывая свойства субстанции, в которой распространяется излучение, а также сложный в общем случае спектр сигнала, вводится понятие фазовой и групповой скорости волны, то есть скорость «центра тяжести» волнового пакета.

Групповая и фазовая скорости совпадают только для линейных волн в средах без дисперсии. Для нелинейных волн групповая скорость может быть как больше, так и меньше фазовой скорости. Однако иногда принято считать, что когда речь идёт о скоростях, близких к скорости света, проявляется заведомое неравноправие между групповой и фазовой скоростями. Фазовая скорость не является ни скоростью движения материального объекта, ни скоростью передачи данных, поэтому она может превышать скорость света, не приводя при этом ни к каким нарушениям теории относительности. Вместе с тем, это немного не точно. Базовые постулаты теории относительности, как и теоретические построения на них, основываются на распространении света в пустоте, то есть в среде без дисперсии, в которой фазовая и групповая скорости одинаковы. В вакууме фазовая и групповая скорость распространения света одинаковы, в воздухе, воде и некоторых других средах разница между ними пренебрежимо мала и ею в большинстве случаев можно пренебрегать[8]. Поэтому если фазовая скорость в среде без дисперсии оказывается большей или меньшей скорости света, то такое же значение будет принимать и групповая скорость.

Групповая скорость характеризует скорость движения сгустка энергии, переносимой волновым пакетом, и потому в большинстве случаев не превышает скорость света. Также при распространении волны в метастабильной среде удаётся в определённых случаях добиться групповой скорости, превышающей скорость света в среде, как например при распространении света в сероуглероде.

Поскольку волна переносит энергию и импульс, то её можно использовать для передачи информации. При этом возникает вопрос о максимально возможной скорости передачи информации с помощью волн данного типа (чаще всего речь идёт об электромагнитных волнах). При этом скорость передачи информации никогда не может превышать скорости света в вакууме, что было подтверждено экспериментально даже для волн, в которых групповая скорость превышает скорость света в среде распространения.

Эту зависимость называют нормальной дисперсией. Она проявляется при прохождении света через стёкла и другие прозрачные среды. В этом случае максимумы волн волнового пакета движутся быстрее огибающей. В результате в хвостовой части пакета за счёт сложения волн возникают новые максимумы, которые передвигаются вперёд и пропадают в его головной части.

Во всех случаях ненулевой дисперсии волновой пакет со временем расплывается[8]. Ещё одной особенностью волнового пакета является то, что он, как и волны, его образующие, обладает принципом суперпозиции при прохождении через другие волновые пакеты, а также в однородной среде движется прямолинейно. Он не может ускоряться, замедляться или отклоняться от прямолинейности своего распространения другими волновыми пакетами, электрическими и магнитными полями, — что не отвечает требованиям представления частицы в виде волны.

При описании процессов распространения волн различают физическую и геометрическую дисперсию. Физическая дисперсия обусловлена свойствами среды, в которой распространяется волна. В этом случае фазовая скорость волны определяется приведенной выше формулой. Однако, изменение фазовой скорости с частотой возникает и при распространении в среде, которая является не дисперсионной, но область существования волны ограничена. С многочисленными примерами такой ситуации встречаемся при изучении волновых полей в волноводах. В волноводе, содержащем идеальную сжимаемую жидкость (газ) фазовая скорость нормальной волны с ростом частоты меняется от бесконечности до скорости волны в соответствующей неограниченной среде (нормальная дисперсия). Более сложные дисперсионные соотношения характеризуют свойства волн в упругих волноводах, то есть волноводах образованных идеальными упругими телами. В них возможно формирование волн, которые имеют противоположные знаки групповой и фазовой скорости[11]

На этом свойстве основана экспериментальная проверка поперечности световых и ЭМ волн как оптическими[12], так и радиофизическими способами[8]. В оптике это осуществляется путём последовательного пропускания луча через два поляризатора. При их скрещенном положении на выходе свет исчезает. Впервые получил обычный и необычный поляризованный свет Эразм Бартолинус в 1669 году. В радиофизике опыт проводится в УКВ-диапазоне с помощью волноводов. При скрещенных волноводах сигнал в приёмнике исчезает. Впервые этот опыт провёл П. Н. Лебедев в начале XX века.

Если на пути волны встречается какой-либо дефект среды, тело или граница раздела двух сред, то это приводит к искажению нормального распространения волны. В результате этого наблюдаются следующие явления:

Конкретные эффекты, возникающие при этих процессах, зависят от свойств волны и характера препятствия.

Излучения с разной длиной волны, но одинаковые по физической природе, могут интерферировать. При этом могут возникнуть следующие частные эффекты:

Контролируемые биения используют для передачи информации. Существует передача информации с помощью амплитудной, частотной, фазовой и поляризационной[13] модуляции.

Конечный результат проявления от встречи волн зависит от их свойств: физической природы, когерентности, поляризации и т. д.

В связи с многообразием, нелинейностью свойств субстанции, особенностями границ и способов возбуждения, пользуются свойством разложения любых, самых сложных колебаний в спектр по частотам отклика субстанции на возбуждение. Для дискретных спектров наиболее общим решением моделирующих уравнений является выражение, которое удобно представлять в комплексной форме:

В идеальной дискретной системе переход от одного режима к другому определяется разностью фаз колебания соседних элементов. При достижении противофазности колебаний система переходит от периодического режима к критическому. В апериодическом режиме противофазность колебаний соседних элементов сохраняется, но от точки возбуждения идёт интенсивное затухание колебательного процесса последующих элементов системы. Данный режим проявляется и в конечных упругих линиях.

В линиях с сопротивлением колебания соседних элементов никогда не достигают противофазности. Тем не менее, особенности колебаний, характерные для апериодического режима, сохраняются и при наличии сопротивления.

Гармонической волной называется линейная монохроматическая волна, распространяющаяся в бесконечной динамической системе. В распределённых системах общий вид волны описывается выражением, являющимся аналитическим решением линейного волнового уравнения

Лучом волны (геометрическим лучом) называется нормаль к волновому фронту. Например, плоской волне (см. раздел «Классификация волн») соответствует пучок параллельных прямых лучей; сферической волне — радиально расходящийся пучок лучей.

Расчёт формы лучей при небольшой длине волны — по сравнению с препятствиями, поперечными размерами фронта волны, расстояниями до схождения волн и т. п. — позволяет упростить сложный расчёт распространения волны. Это применяется в геометрической акустике и геометрической оптике.

Наряду с понятием «геометрический луч», зачастую удобно использовать понятие «физический луч», который является линией (геометрическим лучом) только в определённом приближении, когда поперечными размерами самого луча можно пренебречь. Учёт физичности понятия луча позволяет рассматривать волновые процессы в самом луче, наряду с рассмотрением процессов распространения луча как геометрического. Особенно это важно при рассмотрении физических процессов излучения движущимся источником.