Волна

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от , проверенной 11 января 2017 года; проверки требует .

Поскольку волновые процессы обусловлены совместным колебанием элементов динамической системы (осцилляторов, элементарных объёмов), они обладают как свойствами колебаний своих элементов, так и свойствами совокупности этих колебаний.

Для сложных процессов с дисперсией и нелинейностью, данная зависимость применима для каждой частоты спектра, в который может быть разложен любой волновой процесс.

Имеется множество классификаций волн, различающихся по своей физической природе, по конкретному механизму распространения, по среде распространения и т. п.

Особенности физической среды, в которой распространяются волны, накладывают особенности на характер их распространения, оставляя неизменными базовые волновые свойства. В связи с этим различают следующие основные виды волн:

Также как в случае распространения волн в средах с изломом при анизотропности параметров среды для продольных и поперечных волн, наклонные волны тоже описываются линейными уравнениями, хотя их решения показывают даже срыв колебательного процесса на изломе. Их обычно относят к нелинейным колебательным процессам, хотя по сути они таковыми не являются.

Следует отметить, что в ряде случаев волновые процессы в линиях с сопротивлением могут быть сведены к решению линейного волнового уравнения (системы линейных волновых уравнений для дискретных динамических систем).

В ограниченных в пространстве субстанциях волновым процессам свойственно проявление резонансных эффектов, обусловленных множественным наложением прямых и отражённых от границ волн, что приводит к резкому возрастанию амплитуды волнового процесса. При множественном наложении в области резонанса происходит аддитивное накопление энергии динамической системой вследствие синфазности прямых и обратных волн. Обычно принято считать, что в идеальных динамических системах без диссипации энергии при частоте резонанса амплитуда колебаний становится бесконечной, но это не всегда происходит, поскольку энергия свободных колебаний во многих случаях остаётся конечной. Здесь следует различать особенности возникновения резонансов в динамических системах:

Вынужденные процессы возникают в системе при постоянном динамическом воздействии внешней силы. В этом случае спектр колебаний, возникающих в системе, является непрерывным с возрастанием амплитуды на резонансных частотах.

Свободные колебания являются результатом последействия после окончания воздействия внешнего возмущения. Для этих волновых процессов характерен дискретный спектр, соответствующий частотам внутренних резонансов динамической системы. Данные колебания описываются волновым уравнением (системой уравнений) с нулевой правой частью. В математике такого типа дифференциальные уравнения называют однородными, а их решения — общими. Для нахождения постоянных интегрирования в данном случае требуется знание ненулевых параметров колебания хотя бы в одной точке динамической системы. При нулевом отклонении параметров всей системы (отсутствии предварительного возмущения) общее решение уравнения будет обращаться в ноль. При этом частное решение может быть и ненулевым. Таким образом, общее и частное решение волнового уравнения описывают различные процессы, возникающие в динамической системе. Частное решение описывает реакцию на непосредственное воздействие на систему, а общее решение — последействие системы при окончании воздействия на неё.

При предельном переходе к динамической системе с распределёнными параметрами в идеальном случае амплитуды возрастают до бесконечности. В линиях с сопротивлением, амплитуды резонансов в любом случае конечны. Величина сопротивления/вязкости влияет как на амплитуды резонансов, уменьшая их, так и смещает частоты резонансов.

Если волновое сопротивление границы (в динамических системах с сосредоточенными параметрами) носит комплексный характер, то при определённых значениях такого сопротивления в динамической системе происходит резкое смещение резонансных частот.

Динамические системы с сосредоточенными параметрами можно рассматривать как динамические системы с распределёнными параметрами при условии:

Диаграммы вынужденных колебаний в конечной однородной упругой линии с незакрепленными концами при воздействии внешней силы на внутренние элементы линии.

Причём указанная особенность проявляется и в апериодическом режиме колебаний.

Эту зависимость называют нормальной дисперсией. Она проявляется при прохождении света через стёкла и другие прозрачные среды. В этом случае максимумы волн волнового пакета движутся быстрее огибающей. В результате в хвостовой части пакета за счёт сложения волн возникают новые максимумы, которые передвигаются вперёд и пропадают в его головной части.

Если на пути волны встречается какой-либо дефект среды, тело или граница раздела двух сред, то это приводит к искажению нормального распространения волны. В результате этого наблюдаются следующие явления:

Конкретные эффекты, возникающие при этих процессах, зависят от свойств волны и характера препятствия.

В связи с многообразием, нелинейностью свойств субстанции, особенностями границ и способов возбуждения, пользуются свойством разложения любых, самых сложных колебаний в спектр по частотам отклика субстанции на возбуждение. Для дискретных спектров наиболее общим решением моделирующих уравнений является выражение, которое удобно представлять в комплексной форме:

В идеальной дискретной системе переход от одного режима к другому определяется разностью фаз колебания соседних элементов. При достижении противофазности колебаний система переходит от периодического режима к критическому. В апериодическом режиме противофазность колебаний соседних элементов сохраняется, но от точки возбуждения идёт интенсивное затухание колебательного процесса последующих элементов системы. Данный режим проявляется и в конечных упругих линиях.

В линиях с сопротивлением колебания соседних элементов никогда не достигают противофазности. Тем не менее, особенности колебаний, характерные для апериодического режима, сохраняются и при наличии сопротивления.

Гармонической волной называется линейная монохроматическая волна, распространяющаяся в бесконечной динамической системе. В распределённых системах общий вид волны описывается выражением, являющимся аналитическим решением линейного волнового уравнения

Наряду с понятием «геометрический луч», зачастую удобно использовать понятие «физический луч», который является линией (геометрическим лучом) только в определённом приближении, когда поперечными размерами самого луча можно пренебречь. Учёт физичности понятия луча позволяет рассматривать волновые процессы в самом луче, наряду с рассмотрением процессов распространения луча как геометрического. Особенно это важно при рассмотрении физических процессов излучения движущимся источником.