Видимое излучение

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от , проверенной 26 мая 2020; проверки требуют .

Ви́димое излуче́ние — электромагнитные волны, воспринимаемые человеческим глазом[1]. Чувствительность человеческого глаза к электромагнитному излучению зависит от длины волны (частоты) излучения, при этом максимум чувствительности приходится на 555 нм (540 ТГц), в зелёной части спектра[2]. Поскольку при удалении от точки максимума чувствительность спадает до нуля постепенно, указать точные границы спектрального диапазона видимого излучения невозможно. Обычно в качестве коротковолновой границы принимают участок 380—400 нм (790—750 ТГц), а в качестве длинноволновой — 760—780 нм (до 810нм) (395—385 ТГц)[1][3]. Электромагнитное излучение с такими длинами волн также называется видимым светом, или просто светом (в узком смысле этого слова).

Не всем цветам, которые различает человеческий глаз, соответствует какое-либо монохроматическое излучение. Такие оттенки, как розовый, бежевый или пурпурный образуются только в результате смешения нескольких монохроматических излучений с различными длинами волн.

Видимое излучение также попадает в «оптическое окно» — область спектра электромагнитного излучения, практически не поглощаемого земной атмосферой. Чистый воздух (в красную сторону спектра), поэтому полуденное небо выглядит голубым.

Многие виды животных способны видеть излучение, не видимое человеческому глазу, то есть не входящее в видимый диапазон. Например, пчёлы и многие другие насекомые видят излучение в ультрафиолетовом диапазоне, что помогает им находить нектар на цветах. Растения, опыляемые насекомыми, оказываются в более выгодном положении с точки зрения продолжения рода, если они ярки именно в ультрафиолетовом спектре. Птицы также способны видеть ультрафиолетовое излучение (300—400 нм), а некоторые виды имеют даже метки на оперении для привлечения партнёра, видимые только в ультрафиолете[4][5].

Первые объяснения причин возникновения спектра видимого излучения дали Исаак Ньютон в книге «Оптика» и Иоганн Гёте в работе «Теория Цветов», однако ещё до них Роджер Бэкон наблюдал оптический спектр в стакане с водой. Лишь спустя четыре века после этого Ньютон открыл дисперсию света в призмах[6][7].

Ньютон первый использовал слово спектр (лат. spectrum — видение, появление) в печати в 1671 году, описывая свои оптические опыты. Он обнаружил, что, когда луч света падает на поверхность стеклянной призмы под углом к поверхности, часть света отражается, а часть проходит через стекло, образуя разноцветные полосы. Учёный предположил, что свет состоит из потока частиц (корпускул) разных цветов, и что частицы разного цвета движутся в прозрачной среде с различной скоростью. По его предположению, красный свет двигался быстрее чем фиолетовый, поэтому и красный луч отклонялся на призме не так сильно, как фиолетовый. Из-за этого и возникал видимый спектр цветов.

Ньютон разделил свет на семь цветов: красный, оранжевый, жёлтый, зелёный, голубой, индиго и фиолетовый. Число семь он выбрал из убеждения (происходящего от древнегреческих софистов), что существует связь между цветами, музыкальными нотами, объектами Солнечной системы и днями недели[6][8]. Человеческий глаз относительно слабо восприимчив к частотам цвета индиго, поэтому некоторые люди не могут отличить его от голубого или фиолетового цвета. Поэтому после Ньютона часто предлагалось считать индиго не самостоятельным цветом, а лишь оттенком фиолетового или голубого (однако он до сих пор включён в спектр в западной традиции). В русской традиции индиго соответствует синему цвету.

Гёте, в отличие от Ньютона, считал, что спектр возникает при наложении разных составных частей света. Наблюдая за широкими лучами света, он обнаружил, что при проходе через призму на краях луча проявляются красно-жёлтые и голубые края, между которыми свет остаётся белым, а спектр появляется, если приблизить эти края достаточно близко друг к другу.

Длины волн, соответствующие различным цветам видимого излучения были впервые представлены 12 ноября 1801 года в Бейкеровской лекции Томасом Юнгом, они получены путём перевода в длины волн параметров колец Ньютона, измеренных самим Исааком Ньютоном. Эти кольца Ньютон получал пропусканием через линзу, лежащую на ровной поверхности, соответствующей нужному цвету части разложенного призмой в спектр света, повторяя эксперимент для каждого из цветов[9]. Юнг представил полученные значения длин волн в виде таблицы, выразив во французских дюймах (1 дюйм=27,07 мм)[10], будучи переведёнными в нанометры, их значения неплохо соответствуют современным, принятым для различных цветов. В 1821 году Йозеф Фраунгофер положил начало измерению длин волн спектральных линий, получив их от видимого излучения Солнца с помощью дифракционной решётки, измерив углы дифракции теодолитом и переведя в длины волн[11]. Как и Юнг, он выразил их во французских дюймах, переведённые в нанометры, они отличаются от современных на единицы[9]. Таким образом, ещё в начале XIX века стало возможным измерять длины волн видимого излучения с точностью до нескольких нанометров.

В XIX веке, после открытия ультрафиолетового и инфракрасного излучений, понимание видимого спектра стало более точным.

В начале XIX века Томас Юнг и Герман фон Гельмгольц также исследовали взаимосвязь между спектром видимого излучения и цветным зрением. Их теория цветного зрения верно предполагала, что для определения цвета глаз использует рецепторы трёх различных типов.

При разложении луча белого цвета в призме образуется спектр, в котором излучения разных длин волн преломляются под разными углами. Цвета, входящие в спектр, то есть такие цвета, которые могут быть получены с помощью света одной длины волны (точнее, с очень узким диапазоном длин волн), называются спектральными цветами[12]. Основные спектральные цвета (имеющие собственное название), а также характеристики излучения этих цветов, представлены в таблице[13]:

Указанные в таблице границы диапазонов носят условный характер, в действительности же цвета плавно переходят друг в друга, и расположение видимых наблюдателем границ между ними в большой степени зависит от условий наблюдения[13]. При разложение луча белого света в призме нет никакого фиолетового, даже луч 405нм выглядит чисто синим. Фиолетовый цвет появляется в радуге, где крайний синий смешивается с соседним красным второй радуги.