Алгебра

А́лгебра (от араб. اَلْجَبْرُаль-джабр «восполнение»[1]) — раздел математики, который можно нестрого охарактеризовать как обобщение и расширение арифметики; в этом разделе числа и другие математические объекты обозначаются буквами и другими символами, что позволяет записывать и исследовать их свойства в самом общем виде. Слово «алгебра» также употребляется в общей алгебре в названиях различных алгебраических систем. В более широком смысле под алгеброй понимают раздел математики, посвящённый изучению операций над элементами множеств произвольной природы, обобщающий обычные операции сложения и умножения чисел[2].

Алгебра как раздел математики традиционно включает следующие категории.

Линейная алгебра — часть алгебры, изучающая векторы, векторные, или линейные пространства, линейные отображения и системы линейных уравнений. К линейной алгебре также относят теорию определителей, теорию матриц, теорию форм (например, квадратичных), теорию инвариантов (частично), тензорное исчисление (частично)[4]. Современная линейная алгебра делает акцент на изучении векторных пространств[5].

причём заданные операции удовлетворяют следующим аксиомам — аксиомам линейного (векторного) пространства:

Евклидовы пространства, аффинные пространства, а также многие другие пространства, изучаемые в геометрии, определяются на основе векторного пространства. Автоморфизмы векторного пространства над полем образуют группу относительно умножения, изоморфную группе невырожденных квадратных матриц, что связывает линейную алгебру с теорией групп, в частности, с теорией линейных представлений групп[5].

Переход от используемых в линейной алгебре n-мерных векторных пространств к бесконечномерным линейным пространствам нашёл своё отражение в некоторых разделах функционального анализа[4]. Другим естественным обобщением является использование не поля, а произвольного кольца. Для модуля над произвольным кольцом не выполняются основные теоремы линейной алгебры. Общие свойства векторных пространств над полем и модулей над кольцом изучаются в алгебраической К-теории[5].

Общая алгебра занимается изучением различных алгебраических систем. В ней рассматриваются свойства операций над объектами независимо от собственно природы объектов[2]. Она включает в себя в первую очередь теории групп и колец. Общие свойства, характерные для обоих видов алгебраических систем, привели к рассмотрению новых алгебраических систем: решёток, категорий, универсальных алгебр, моделей, полугрупп и квазигрупп. Упорядоченные и топологические алгебры, частично упорядоченные и топологические группы и кольца, также относятся к общей алгебре[6].

Точная граница общей алгебры не определена. К ней можно также отнести теорию полей, конечных групп, конечномерных алгебр Ли[6].

Понятие группы возникло в результате формального описания симметрии и эквивалентности геометрических объектов. В теории Галуа, которая и дала начало понятию группы, группы используются для описания симметрии уравнений, корнями которых являются корни некоторого полиномиального уравнения. Группы повсеместно используются в математике и естественных науках, часто для обнаружения внутренней симметрии объектов (группы автоморфизмов). Почти все структуры общей алгебры — частные случаи групп.

Кольцо — это множество R, на котором заданы две бинарные операции: + и × (называемые сложение и умножение), со следующими свойствами:

Истоки алгебры уходят к временам глубокой древности. Арифметические действия над натуральными числами и дробями — простейшие алгебраические операции — встречаются в ранних математических текстах[3]. Ещё в 1650 году до н. э. египетские писцы могли решать отвлечённые уравнения первой степени и простейшие уравнения второй степени, к ним относятся задачи 26 и 33 из папируса Ринда и задача 6 из Московского папируса (так называемые задачи на «аха»). Предполагается, что решение задач было основано на правиле ложного положения[9]. Это же правило, правда, крайне редко, использовали вавилоняне[10].

Вавилонские математики умели решать квадратные уравнения. Они имели дело только с положительными коэффициентами и корнями уравнения, так как не знали отрицательных чисел. По разным реконструкциям в Вавилоне знали либо правило для квадрата суммы, либо правило для произведения суммы и разности, вместе с тем метод вычисления корня полностью соответствует современной формуле. Встречаются и уравнения третьей степени[11]. Кроме того, в Вавилоне была введена особая терминология, использовались шумерские клинописные знаки для обозначения первого неизвестного («длины»), второго неизвестного («ширины»), третьего неизвестного («глубины»), а также различных производных величин («поля» как произведения «длины» и «ширины», «объёма» как произведения «длины», «ширины» и «глубины»), которые можно считать математическими символами, так как в обычной речи уже использовался аккадский язык. Несмотря на явное геометрическое происхождение задач и терминов, использовались они отвлечённо, в частности, «площадь» и «длина» считались однородными[10]. Для решения квадратных уравнений было необходимо уметь осуществлять различные тождественные алгебраические преобразования, оперировать неизвестными величинами. Таким образом был выделен целый класс задач, для решения которых необходимо пользоваться алгебраическими приёмами[11].

Неожиданный переход к алгебре, основанной на арифметике, произошёл в работах Диофанта, который ввёл буквенные обозначения: неизвестное число он назвал «число», вторую степень неизвестного — «квадрат», третью — «куб», четвёртую — «квадрато-квадрат», пятую — «квадрато-куб», шестую — «кубо-куб». Также он ввёл обозначения для отрицательных степеней, свободного члена, отрицательного числа (или вычитания) и знака равенства. Диофант знал и использовал правило переноса вычитаемого из одной части уравнения в другую и правило сокращения равных членов[15]. Исследуя уравнения третьей и четвёртой степеней, Диофант для нахождения рациональной точки на кривой использует такие методы геометрической алгебры, как провести касательную в рациональной точке кривой или провести прямую через две рациональные точки. В X веке «Арифметика» Диофанта, в которой он изложил свои методы, была переведена на арабский язык, а в XVI веке достигла Западной Европы, оказав влияние на работы Ферма и Виета. Идеи Диофанта можно заметить также в работах Эйлера, Якоби, Пуанкаре и других математиков вплоть до начала XX века. В настоящее время проблемы Диофанта принято относить к алгебраической геометрии[16].

За 2000 лет до нашего времени китайские учёные решали уравнения первой степени и их системы, а также квадратные уравнения (см. Математика в девяти книгах). Они уже знали отрицательные и иррациональные числа. Поскольку в китайском языке каждый символ обозначает понятие, то сокращений не было. В XIII веке китайцы открыли закон образования биномиальных коэффициентов, ныне известный как «треугольник Паскаля». В Европе он был открыт лишь 250 лет спустя[17].

Термин «алгебра» взят из сочинения среднеазиатского учёного Аль-Хорезми «» (825 год). Слово «аль-джабр» при этом означало операцию переноса вычитаемых из одной части уравнения в другую и его буквальный смысл «восполнение»[1].

В XII веке алгебра попала в Европу. С этого времени начинается её бурное развитие. Были открыты способы решения уравнений 3 и 4 степеней. Распространение получили отрицательные и комплексные числа. Было доказано, что любое уравнение выше 4 степени нельзя решить алгебраическим способом.

Вплоть до второй половины XX века практическое применение алгебры ограничивалось, в основном, решением алгебраических уравнений и систем уравнений с несколькими переменными. Во второй половине XX века началось бурное развитие ряда новых отраслей техники. Появились электронно-вычислительные машины, устройства для хранения, переработки и передачи информации, системы наблюдения типа радара. Проектирование новых видов техники и их использование немыслимо без применения современной алгебры. Так, электронно-вычислительные машины устроены по принципу конечных автоматов. Для проектирования электронно-вычислительных машин и электронных схем используются методы булевой алгебры. Современные языки программирования для ЭВМ основаны на принципах теории алгоритмов. Теория множеств используется в системах компьютерного поиска и хранения информации. Теория категорий используется в задачах распознавания образов, определении семантики языков программирования, и других практических задачах. Кодирование и декодирование информации производится методами теории групп. Теория рекуррентных последовательностей используется в работе радаров. Экономические расчеты невозможны без использования теории графов. Математическое моделирование широко использует все разделы алгебры.