Алгебраическая геометрия

В XX веке алгебраическая геометрия разделилась на несколько (взаимосвязанных) дисциплин:

Некоторые авторы не проводят терминологического различия между «алгебраическими множествами» и «алгебраическими многообразиями» и вместо этого используют термин «неприводимое алгебраическое множество» (или «неприводимое многообразие»).

В отличие от предыдущего пункта, здесь будут рассматривать только (неприводимые) алгебраические многообразия. С другой стороны, эти определения можно распространить на проективные многообразия.

Два аффинных многообразия называются бирационально эквивалентными, если существуют два рациональных отображения между ними, которые взаимно обратны на областях определения (эквивалентно, поля рациональных функций этих многообразий изоморфны).

задающие рациональное отображение из прямой в окружность, можно проверить, что и обратное отображение рационально (см. также Стереографическая проекция).

Базис Грёбнера — это система элементов, порождающих данный идеал в кольце многочленов над полем (не обязательно алгебраически замкнутым); вычисление базиса Грёбнера позволяет определить некоторые свойства алгебраического множества V, заданного этим идеалом в алгебраически замкнутом расширении (например, система уравнений с действительными коэффициентами естественным образом определяет множество комплексных чисел, удовлетворяющих всем уравнениям).

Информации о базисе Грёбнера недостаточно для вычисления разложения данного множества на неприводимые компоненты, однако существуют алгоритмы решения этой задачи, использующие в том числе и его.

В этот период началась алгебраизация геометрии с использованием коммутативной алгебры: в частности, Давид Гильберт доказал свои теоремы о базисе и Nullstellensatz.