World’s whitest paint now thinner than ever, ideal for vehicles

The world’s whitest paint, developed at Purdue University, is now thinner and lighter than ever before. This makes it ideal for cooling vehicles like airplanes or cars, which reduces the reliance on air conditioning. (Photo credit: Unsplash/Ern Low)

The original world’s whitest paint used nanoparticles of barium sulfate to reflect 98.1% of sunlight, cooling outdoor surfaces more than 4.5°C below ambient temperature. Cover your roof in that paint, and you could essentially cool your home with much less air conditioning. But there’s a problem.

“To achieve this level of radiative cooling below the ambient temperature, we had to apply a layer of paint at least 400 microns thick,” Ruan said. “That’s fine if you’re painting a robust stationary structure, like the roof of a building. But in applications that have precise size and weight requirements, the paint needs to be thinner and lighter.”

Purdue University researchers have created a new formula for the world's whitest paint, making it thinner and lighter. The previous iteration (left) required a layer 0.4 millimeters thick to achieve sub-ambient radiant cooling. The new formulation can achieve similar cooling with a layer just 0.15 millimeters thick. This is thin and light enough for its radiant cooling effects to be applied to vehicles like cars, trains and airplanes. (Purdue University photo/Andrea Felicelli) Download image

That’s why Ruan’s team began experimenting with other materials, pushing the limit of materials’ capability to scatter sunlight. Their latest formulation is a nanoporous paint incorporating hexagonal boron nitride as the pigment, a substance mostly used in lubricants. This new paint achieves nearly the same benchmark of solar reflectance (97.9%) with just a single 150-micron layer of paint.

“Hexagonal boron nitride has a high refractive index, which leads to strong scattering of sunlight,” said Andrea Felicelli, a Purdue PhD student in mechanical engineering who worked on the project. “The particles of this material also have a unique morphology, which we call nanoplatelets.”

Ioanna Katsamba, another PhD student in mechanical engineering at Purdue, ran computer simulations to understand if the nanoplatelet morphology offers any benefits. “The models showed us that the nanoplatelets are more effective in bouncing back the solar radiation than spherical nanoparticles used in previous cooling paints,” Katsamba said.

The paint also incorporates voids of air, which make it highly porous on a nanoscale. This lower density, together with the thinness, provides another huge benefit: reduced weight. The newer paint weighs 80% less than barium sulfate paint yet achieves nearly identical solar reflectance.

“This light weight opens the doors to all kinds of applications,” said George Chiu, a Purdue professor of mechanical engineering and an expert in inkjet printing. “Now this paint has the potential to cool the exteriors of airplanes, cars or trains. An airplane sitting on the tarmac on a hot summer day won’t have to run its air conditioning as hard to cool the inside, saving large amounts of energy. Spacecraft also have to be as light as possible, and this paint can be a part of that.”

As to that other big question – where can I buy the paint? – Ruan explains. “We are in discussions right now to commercialize it,” he said. “There are still a few issues that need to be addressed, but progress is being made.”

Either way, these Purdue researchers look forward to what the paint could accomplish. “Using this paint will help cool surfaces and greatly reduce the need for air conditioning,” Ruan said. “This not only saves money, but it reduces energy usage, which in turn reduces greenhouse gas emissions. And unlike other cooling methods, this paint radiates all the heat into deep space, which also directly cools down our planet. It’s pretty amazing that a paint can do all that.”

About Purdue Research Foundation Office of Technology Commercialization

The Purdue Research Foundation Office of Technology Commercialization operates one of the most comprehensive technology transfer programs among leading research universities in the U.S. Services provided by this office support the economic development initiatives of Purdue University and benefit the university’s academic activities through commercializing, licensing and protecting Purdue intellectual property. The office is housed in the Convergence Center for Innovation and Collaboration in Discovery Park District at Purdue, adjacent to the Purdue campus. In fiscal year 2021, the office reported 159 deals finalized with 236 technologies signed, 394 disclosures received and 187 issued U.S. patents. The office is managed by the Purdue Research Foundation, which received the 2019 Innovation and Economic Prosperity Universities Award for Place from the Association of Public and Land-grant Universities. In 2020, IPWatchdog Institute ranked Purdue third nationally in startup creation and in the top 20 for patents. The Purdue Research Foundation is a private, nonprofit foundation created to advance the mission of Purdue University. Contact otcip@prf.org for more information.

Thin Layer Lightweight and Ultrawhite Hexagonal Boron Nitride Nanoporous Paints for Daytime Radiative Cooling

Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, (765) 494-4600