Biologists Create a New Type of Human Cells

We and our partners use cookies to Store and/or access information on a device.We and our partners use data for Personalised ads and content, ad and content measurement, audience insights and product development.An example of data being processed may be a unique identifier stored in a cookie. Some of our partners may process your data as a part of their legitimate business interest without asking for consent. To view the purposes they believe they have legitimate interest for, or to object to this data processing use the vendor list link below. The consent submitted will only be used for data processing originating from this website. If you would like to change your settings or withdraw consent at any time, the link to do so is in our privacy policy accessible from our home page.

Fluorescent microscopy image of the new cells (extraembryonic mesoderm cells) and placenta progenitor stem cells. The new cells are marked in red, and cells corresponding to placental stem cells are shown in green. The DNA (nucleus) of each cell is shown in blue. Credit: Amitesh Panda (KU Leuven)

A human embryo implants in the womb around seven days after fertilization if everything goes correctly. Due to technological and ethical constraints, the embryo becomes unavailable for study at that point. That is why scientists have already created stem cell models for various kinds of embryonic and extraembryonic cells in order to investigate human development in a dish.

From left to right: Bradley Balaton, Thi Xuan Ai Pham, Amitesh Panda, and Vincent Pasque. Credit: KU Leuven

Vincent Pasque’s team at KU Leuven has developed the first model for a specific type of human embryo cells, extraembryonic mesoderm cells. Professor Pasque: “These cells generate the first blood in an embryo, help to attach the embryo to the future placenta, and play a role in forming the primitive umbilical cord. In humans, this type of cell appears at an earlier developmental stage than in mouse embryos, and there might be other important differences between species. That makes our model especially important: research in mice may not give us answers that also apply to humans.”

The model cells were created by the researchers using human stem cells, which can still grow into all cell types in an embryo. The new cells closely resemble their natural counterparts in human embryos and hence serve as an excellent model for that cell type.

“You don’t make a new human cell type every day,” Pasque continues. “We are very excited because now we can study processes that normally remain inaccessible during development. In fact, the model has already enabled us to find out where extraembryonic mesoderm cells come from. In the longer term, our model will hopefully also shed more light on medical challenges such as fertility problems, miscarriages, and developmental disorders.”