# Semisimple Lie algebra

In mathematics, a Lie algebra is **semisimple** if it is a direct sum of simple Lie algebras (non-abelian Lie algebras without any non-zero proper ideals).

The significance of semisimplicity comes firstly from the Levi decomposition, which states that every finite dimensional Lie algebra is the semidirect product of a solvable ideal (its radical) and a semisimple algebra. In particular, there is no nonzero Lie algebra that is both solvable and semisimple.

Semisimple Lie algebras have a very elegant classification, in stark contrast to solvable Lie algebras. Semisimple Lie algebras over an algebraically closed field of characteristic zero are completely classified by their root system, which are in turn classified by Dynkin diagrams. Semisimple algebras over non-algebraically closed fields can be understood in terms of those over the algebraic closure, though the classification is somewhat more intricate; see real form for the case of real semisimple Lie algebras, which were classified by Élie Cartan.

Further, the representation theory of semisimple Lie algebras is much cleaner than that for general Lie algebras. For example, the Jordan decomposition in a semisimple Lie algebra coincides with the Jordan decomposition in its representation; this is not the case for Lie algebras in general.

The semisimple Lie algebras over the complex numbers were first classified by Wilhelm Killing (1888–90), though his proof lacked rigor. His proof was made rigorous by Élie Cartan (1894) in his Ph.D. thesis, who also classified semisimple real Lie algebras. This was subsequently refined, and the present classification by Dynkin diagrams was given by then 22-year-old Eugene Dynkin in 1947. Some minor modifications have been made (notably by J. P. Serre), but the proof is unchanged in its essentials and can be found in any standard reference, such as (Humphreys 1972).

Each endomorphism *x* of a finite-dimensional vector space over a field of characteristic zero can be decomposed uniquely into a semisimple (i.e., diagonalizable over the algebraic closure) and nilpotent part

such that *s* and *n* commute with each other. Moreover, each of *s* and *n* is a polynomial in *x*. This is the Jordan decomposition of *x*.

is the Jordan decomposition of ρ(*x*) in the endomorphism algebra of the representation space.^{[8]} (This is proved as a consequence of Weyl's complete reducibility theorem; see .)

The implication of the axiomatic nature of a root system and Serre's theorem is that one can enumerate all possible root systems; hence, "all possible" semisimple Lie algebras (finite-dimensional over an algebraically closed field of characteristic zero).

Every semisimple Lie algebra over an algebraically closed field of characteristic 0 is a direct sum of simple Lie algebras (by definition), and the finite-dimensional simple Lie algebras fall in four families – A_{n}, B_{n}, C_{n}, and D_{n} – with five exceptions
E_{6}, E_{7}, E_{8}, F_{4}, and G_{2}. Simple Lie algebras are classified by the connected Dynkin diagrams, shown on the right, while semisimple Lie algebras correspond to not necessarily connected Dynkin diagrams, where each component of the diagram corresponds to a summand of the decomposition of the semisimple Lie algebra into simple Lie algebras.

The classification proceeds by considering a Cartan subalgebra (see below) and the adjoint action of the Lie algebra on this subalgebra. The root system of the action then both determines the original Lie algebra and must have a very constrained form, which can be classified by the Dynkin diagrams. See the section below describing Cartan subalgebras and root systems for more details.

The classification is widely considered one of the most elegant results in mathematics – a brief list of axioms yields, via a relatively short proof, a complete but non-trivial classification with surprising structure. This should be compared to the classification of finite simple groups, which is significantly more complicated.

Over a non-algebraically closed field, the classification is more complicated – one classifies simple Lie algebras over the algebraic closure, then for each of these, one classifies simple Lie algebras over the original field which have this form (over the closure). For example, to classify simple real Lie algebras, one classifies real Lie algebras with a given complexification, which are known as real forms of the complex Lie algebra; this can be done by Satake diagrams, which are Dynkin diagrams with additional data ("decorations").^{[12]}

For a semisimple Lie algebra over a field that has characteristic zero but is not algebraically closed, there is no general structure theory like the one for those over an algebraically closed field of characteristic zero. But over the field of real numbers, there are still the structure results.

Many properties of complex semisimple/reductive Lie algebras are true not only for semisimple/reductive Lie algebras over algebraically closed fields, but more generally for split semisimple/reductive Lie algebras over other fields: semisimple/reductive Lie algebras over algebraically closed fields are always split, but over other fields this is not always the case. Split Lie algebras have essentially the same representation theory as semsimple Lie algebras over algebraically closed fields, for instance, the splitting Cartan subalgebra playing the same role as the Cartan subalgebra plays over algebraically closed fields. This is the approach followed in (Bourbaki 2005), for instance, which classifies representations of split semisimple/reductive Lie algebras.