Earth science

The rocky side of a mountain creek near Orosí, Costa Rica. (presumably metamorphic rocks)

Earth science or geoscience includes all fields of natural science related to planet Earth. This is a branch of science dealing with the physical and chemical constitution of Earth and its atmosphere. Earth science can be considered to be a branch of planetary science, but with a much older history. Earth science encompasses four main branches of study, the lithosphere, the hydrosphere, the atmosphere, and the biosphere, each of which is further broken down into more specialized fields.

There are both reductionist and holistic approaches to Earth sciences. It is also the study of Earth and its neighbors in space. Some Earth scientists use their knowledge of the planet to locate and develop energy and mineral resources. Others study the impact of human activity on Earth's environment, and design methods to protect the planet. Some use their knowledge about Earth processes such as volcanoes, earthquakes, and hurricanes to plan communities that will not expose people to these dangerous events.

Earth sciences can include the study of geology, the lithosphere, and the large-scale structure of Earth's interior, as well as the atmosphere, hydrosphere, and biosphere. Typically, Earth scientists use tools from geology, chronology, physics, chemistry, geography, biology, and mathematics to build a quantitative understanding of how Earth works and evolves. Earth science affects our everyday lives. For example, meteorologists study the weather and watch for dangerous storms. Hydrologists examine water and warn of floods. Seismologists study earthquakes and try to understand where they will strike. Geologists study rocks and help to locate useful minerals. Earth scientists often work in the field—perhaps climbing mountains, exploring the seabed, crawling through caves, or wading in swamps. They measure and collect samples (such as rocks or river water), then record their findings on charts and maps.

The following fields of science are generally categorized within the Earth sciences:

Plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the Earth's crust.[9]

Beneath the Earth's crust lies the mantle which is heated by the radioactive decay of heavy elements. The mantle is not quite solid and consists of magma which is in a state of semi-perpetual convection. This convection process causes the lithospheric plates to move, albeit slowly. The resulting process is known as plate tectonics.[10][11][12][13]

Plate tectonics might be thought of as the process by which the Earth is resurfaced. As the result of seafloor spreading, new crust and lithosphere is created by the flow of magma from the mantle to the near surface, through fissures, where it cools and solidifies. Through subduction, oceanic crust and lithosphere returns to the convecting mantle.[11][13][14]

Areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the Earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform (or conservative) boundaries[11][13][15] Earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as part of subduction.[16]

Volcanoes result primarily from the melting of subducted crust material. Crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface—giving birth to volcanoes.[11][16]

The troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up Earth's atmosphere. 75% of the gases in the atmosphere are located within the troposphere, the lowest layer. In all, the atmosphere is made up of about 78.0% nitrogen, 20.9% oxygen, and 0.92% argon. In addition to the nitrogen, oxygen, and argon there are small amounts of other gases including CO2 and water vapor.[17] Water vapor and CO2 allow the Earth's atmosphere to catch and hold the Sun's energy through a phenomenon called the greenhouse effect.[18] This allows Earth's surface to be warm enough to have liquid water and support life. In addition to storing heat, the atmosphere also protects living organisms by shielding the Earth's surface from cosmic rays—which are often incorrectly thought to be deflected by the magnetic field.[19] The magnetic field—created by the internal motions of the core—produces the magnetosphere which protects Earth's atmosphere from the solar wind.[20] As the Earth is 4.5 billion years old,[21] it would have lost its atmosphere by now if there were no protective magnetosphere.

An electromagnet is a magnet that is created by an electric current.[22] The Earth has a solid iron inner core surrounded by a fluid outer core that convects;[23] therefore, Earth is an electromagnet. The motion of fluid convection sustains the Earth's magnetic field.[23][24]

The magnetic field is also very important since some birds and insects use the field to navigate over long distances. They are able to do so by the magnetized iron crystals found in their skin for orientation. The most important function of Earth's magnetic field is protecting it's organisms. High energy protons are deflected along with electrons in the solar wind. If organisms have direct exposure to these particles it would be lethal.[25] For the consistency of a magnetic field to remain constant there must be an attractive magnetic field. If the motion of a magnetic field changes then every aspect of it does as well. It indicates a force that is proportional to the velocity of a moving charge[26]

Magnetic Fields can be measured with many different units like Tesla (T). another commonly used unit is the Gauss (G) or me 1 G is equivalent to 10-4 T (or 1 mG = 0.1µT) Smaller magnetic field unit is the Gauss (1 Tesla = 10,000 Gauss)[27]

In the image above the first example their Anti-parallel currents with cause them to repel. In the second example they are parallel currents which cause attraction.

Everything within the magnetic field can be defined by the Lorentz Law.

The electromagnetic force holds atoms and molecules together. In fact, the forces of electric attraction and repulsion of electric charges are so dominant over the other three fundamental forces that they can be considered to be negligible as determiners of atomic and molecular structure[28]

The Lorentz Force Law was names after Dutch physicist, Hendrik Antoon Lorentz he was the first to formulate this equation. Lorentz theorized that atoms might consist of charged particles and suggested that the oscillations of these charged particles were the source of light.[29]

Methodologies vary depending on the nature of the subjects being studied. Studies typically fall into one of three categories: observational, experimental, or theoretical. Earth scientists often conduct sophisticated computer analysis or visit an interesting location to study earth phenomena (e.g. Antarctica or hot spot island chains).

A foundational idea in Earth science is the notion of uniformitarianism, which states that "ancient geologic features are interpreted by understanding active processes that are readily observed."[citation needed] In other words, any geologic processes at work in the present have operated in the same ways throughout geologic time. This enables those who study Earth's history to apply knowledge of how Earth processes operate in the present to gain insight into how the planet has evolved and changed throughout long history.

Earth science generally recognizes four spheres, the lithosphere, the hydrosphere, the atmosphere, and the biosphere;[31] these correspond to rocks, water, air and life. Also included by some are the cryosphere (corresponding to ice) as a distinct portion of the hydrosphere and the pedosphere (corresponding to soil) as an active and intermixed sphere.