# Cross product

If two vectors have the same direction or have the exact opposite direction from each other (that is, they are *not* linearly independent), or if either one has zero length, then their cross product is zero.^{[2]} More generally, the magnitude of the product equals the area of a parallelogram with the vectors for sides; in particular, the magnitude of the product of two perpendicular vectors is the product of their lengths.

Like the dot product, it depends on the metric of Euclidean space, but unlike the dot product, it also depends on a choice of orientation (or "handedness") of the space (it's why an oriented space is needed). In connection with the cross product, the exterior product of vectors can be used in arbitrary dimensions (with a bivector or 2-form result) and is independent of the orientation of the space.

The product can be generalized in various ways, using the orientation and metric structure just as for the traditional 3-dimensional cross product, one can, in n dimensions, take the product of *n* − 1 vectors to produce a vector perpendicular to all of them. But if the product is limited to non-trivial binary products with vector results, it exists only in three and seven dimensions.^{[3]} The cross-product in seven dimensions has undesirable properties, however, so it is not used in mathematical physics to represent quantities such as multi-dimensional space-time.^{[4]} (See § Generalizations, below, for other dimensions.)

The cross product of two vectors **a** and **b** is defined only in three-dimensional space and is denoted by **a** × **b**. In physics and applied mathematics, the wedge notation **a** ∧ **b** is often used (in conjunction with the name *vector product*),^{[5]}^{[6]}^{[7]} although in pure mathematics such notation is usually reserved for just the exterior product, an abstraction of the vector product to *n* dimensions.

The cross product **a** × **b** is defined as a vector **c** that is perpendicular (orthogonal) to both **a** and **b**, with a direction given by the right-hand rule^{[1]} and a magnitude equal to the area of the parallelogram that the vectors span.^{[2]}

If the vectors **a** and **b** are parallel (that is, the angle *θ* between them is either 0° or 180°), by the above formula, the cross product of **a** and **b** is the zero vector **0**.

By convention, the direction of the vector **n** is given by the right-hand rule, where one simply points the forefinger of the right hand in the direction of **a** and the middle finger in the direction of **b**. Then, the vector **n** is coming out of the thumb (see the adjacent picture). Using this rule implies that the cross product is anti-commutative; that is, **b** × **a** = −(**a** × **b**). By pointing the forefinger toward **b** first, and then pointing the middle finger toward **a**, the thumb will be forced in the opposite direction, reversing the sign of the product vector.

As the cross product operator depends on the orientation of the space (as explicit in the definition above), the cross product of two vectors is not a "true" vector, but a *pseudovector*. See § Handedness for more detail.

In 1881, Josiah Willard Gibbs, and independently Oliver Heaviside, introduced both the dot product and the cross product using a period (**a** . **b**) and an "x" (**a** x **b**), respectively, to denote them.^{[10]}

In 1877, to emphasize the fact that the result of a dot product is a scalar while the result of a cross product is a vector, William Kingdon Clifford coined the alternative names **scalar product** and **vector product** for the two operations.^{[10]} These alternative names are still widely used in the literature.

Both the cross notation (**a** × **b**) and the name **cross product** were possibly inspired by the fact that each scalar component of **a** × **b** is computed by multiplying non-corresponding components of **a** and **b**. Conversely, a dot product **a** ⋅ **b** involves multiplications between corresponding components of **a** and **b**. As explained below, the cross product can be expressed in the form of a determinant of a special 3 × 3 matrix. According to Sarrus's rule, this involves multiplications between matrix elements identified by crossed diagonals.

If (**i**, **j**,**k**) is a positively oriented orthonormal basis, the basis vectors satisfy the following equalities^{[1]}

The anticommutativity of the cross product (and the obvious lack of linear independence) also implies that

These equalities, together with the distributivity and linearity of the cross product (though neither follows easily from the definition given above), are sufficient to determine the cross product of any two vectors **a** and **b**. Each vector can be defined as the sum of three orthogonal components parallel to the standard basis vectors:

This can be interpreted as the decomposition of **a** × **b** into the sum of nine simpler cross products involving vectors aligned with **i**, **j**, or **k**. Each one of these nine cross products operates on two vectors that are easy to handle as they are either parallel or orthogonal to each other. From this decomposition, by using the above-mentioned equalities and collecting similar terms, we obtain:

meaning that the three scalar components of the resulting vector **s** = *s*_{1}**i** + *s*_{2}**j** + *s*_{3}**k** = **a** × **b** are

The cross product can also be expressed as the formal determinant:^{[note 1]}^{[1]}

This determinant can be computed using Sarrus's rule or cofactor expansion. Using Sarrus's rule, it expands to

Using cofactor expansion along the first row instead, it expands to^{[11]}

The latter formula avoids having to change the orientation of the space when we inverse an orthonormal basis.

The magnitude of the cross product can be interpreted as the positive area of the parallelogram having **a** and **b** as sides (see Figure 1):^{[1]}

Indeed, one can also compute the volume *V* of a parallelepiped having **a**, **b** and **c** as edges by using a combination of a cross product and a dot product, called scalar triple product (see Figure 2):

Since the result of the scalar triple product may be negative, the volume of the parallelepiped is given by its absolute value:

Because the magnitude of the cross product goes by the sine of the angle between its arguments, the cross product can be thought of as a measure of *perpendicularity* in the same way that the dot product is a measure of *parallelism*. Given two unit vectors, their cross product has a magnitude of 1 if the two are perpendicular and a magnitude of zero if the two are parallel. The dot product of two unit vectors behaves just oppositely: it is zero when the unit vectors are perpendicular and 1 if the unit vectors are parallel.

Unit vectors enable two convenient identities: the dot product of two unit vectors yields the cosine (which may be positive or negative) of the angle between the two unit vectors. The magnitude of the cross product of the two unit vectors yields the sine (which will always be positive).

If the cross product of two vectors is the zero vector (that is, **a** × **b** = **0**), then either one or both of the inputs is the zero vector, (**a** = **0** or **b** = **0**) or else they are parallel or antiparallel (**a** ∥ **b**) so that the sine of the angle between them is zero (*θ* = 0° or *θ* = 180° and sin *θ* = 0).

Distributivity, linearity and Jacobi identity show that the **R**^{3} vector space together with vector addition and the cross product forms a Lie algebra, the Lie algebra of the real orthogonal group in 3 dimensions, SO(3).
The cross product does not obey the cancellation law; that is, **a** × **b** = **a** × **c** with **a** ≠ **0** does not imply **b** = **c**, but only that:

This can be the case where **b** and **c** cancel, but additionally where **a** and **b** − **c** are parallel; that is, they are related by a scale factor *t*, leading to:

If, in addition to **a** × **b** = **a** × **c** and **a** ≠ **0** as above, it is the case that **a** ⋅ **b** = **a** ⋅ **c** then

As **b** − **c** cannot be simultaneously parallel (for the cross product to be **0**) and perpendicular (for the dot product to be 0) to **a**, it must be the case that **b** and **c** cancel: **b** = **c**.

From the geometrical definition, the cross product is invariant under proper rotations about the axis defined by **a** × **b**. In formulae:

More generally, the cross product obeys the following identity under matrix transformations:

The cross product of two vectors lies in the null space of the 2 × 3 matrix with the vectors as rows:

The product rule of differential calculus applies to any bilinear operation, and therefore also to the cross product:

The cross product is used in both forms of the triple product. The scalar triple product of three vectors is defined as

It is the signed volume of the parallelepiped with edges **a**, **b** and **c** and as such the vectors can be used in any order that's an even permutation of the above ordering. The following therefore are equal:

The vector triple product is the cross product of a vector with the result of another cross product, and is related to the dot product by the following formula

The mnemonic "BAC minus CAB" is used to remember the order of the vectors in the right hand member. This formula is used in physics to simplify vector calculations. A special case, regarding gradients and useful in vector calculus, is

Other identities relate the cross product to the scalar triple product:

The right-hand side is the Gram determinant of **a** and **b**, the square of the area of the parallelogram defined by the vectors. This condition determines the magnitude of the cross product. Namely, since the dot product is defined, in terms of the angle *θ* between the two vectors, as:

which is the magnitude of the cross product expressed in terms of *θ*, equal to the area of the parallelogram defined by **a** and **b** (see definition above).

The combination of this requirement and the property that the cross product be orthogonal to its constituents **a** and **b** provides an alternative definition of the cross product.^{[13]}

can be compared with another relation involving the right-hand side, namely Lagrange's identity expressed as:^{[14]}

where **a** and **b** may be *n*-dimensional vectors. This also shows that the Riemannian volume form for surfaces is exactly the surface element from vector calculus. In the case where *n* = 3, combining these two equations results in the expression for the magnitude of the cross product in terms of its components:^{[15]}

The same result is found directly using the components of the cross product found from:

In **R**^{3}, Lagrange's equation is a special case of the multiplicativity |**vw**| = |**v**||**w**| of the norm in the quaternion algebra.

It is a special case of another formula, also sometimes called Lagrange's identity, which is the three dimensional case of the Binet–Cauchy identity:^{[16]}^{[17]}

The cross product conveniently describes the infinitesimal generators of rotations in **R**^{3}. Specifically, if **n** is a unit vector in **R**^{3} and *R*(*φ*, **n**) denotes a rotation about the axis through the origin specified by **n**, with angle φ (measured in radians, counterclockwise when viewed from the tip of **n**), then

for every vector **x** in **R**^{3}. The cross product with **n** therefore describes the infinitesimal generator of the rotations about **n**. These infinitesimal generators form the Lie algebra **so**(3) of the rotation group SO(3), and we obtain the result that the Lie algebra **R**^{3} with cross product is isomorphic to the Lie algebra **so**(3).

The vector cross product also can be expressed as the product of a skew-symmetric matrix and a vector:^{[16]}

The columns [**a**]_{×,i} of the skew-symmetric matrix for a vector **a** can be also obtained by calculating the cross product with unit vectors. That is,

This result can be generalized to higher dimensions using geometric algebra. In particular in any dimension bivectors can be identified with skew-symmetric matrices, so the product between a skew-symmetric matrix and vector is equivalent to the grade-1 part of the product of a bivector and vector.^{[18]} In three dimensions bivectors are dual to vectors so the product is equivalent to the cross product, with the bivector instead of its vector dual. In higher dimensions the product can still be calculated but bivectors have more degrees of freedom and are not equivalent to vectors.^{[18]}

This notation is also often much easier to work with, for example, in epipolar geometry.

From the general properties of the cross product follows immediately that

The above-mentioned triple product expansion (bac–cab rule) can be easily proven using this notation.

As mentioned above, the Lie algebra **R**^{3} with cross product is isomorphic to the Lie algebra **so(3)**, whose elements can be identified with the 3×3 skew-symmetric matrices. The map **a** → [**a**]_{×} provides an isomorphism between **R**^{3} and **so(3)**. Under this map, the cross product of 3-vectors corresponds to the commutator of 3x3 skew-symmetric matrices.

The cross product can alternatively be defined in terms of the Levi-Civita tensor *E _{ijk}* and a dot product

*η*, which are useful in converting vector notation for tensor applications:

^{mi}In classical mechanics: representing the cross product by using the Levi-Civita symbol can cause mechanical symmetries to be obvious when physical systems are isotropic. (An example: consider a particle in a Hooke's Law potential in three-space, free to oscillate in three dimensions; none of these dimensions are "special" in any sense, so symmetries lie in the cross-product-represented angular momentum, which are made clear by the abovementioned Levi-Civita representation).^{[citation needed]}

The word "xyzzy" can be used to remember the definition of the cross product.

The second and third equations can be obtained from the first by simply vertically rotating the subscripts, *x* → *y* → *z* → *x*. The problem, of course, is how to remember the first equation, and two options are available for this purpose: either to remember the relevant two diagonals of Sarrus's scheme (those containing * i*), or to remember the xyzzy sequence.

Since the first diagonal in Sarrus's scheme is just the main diagonal of the above-mentioned 3×3 matrix, the first three letters of the word xyzzy can be very easily remembered.

Similarly to the mnemonic device above, a "cross" or X can be visualized between the two vectors in the equation. This may be helpful for remembering the correct cross product formula.

The cross product has applications in various contexts. For example, it is used in computational geometry, physics and engineering. A non-exhaustive list of examples follows.

The cross product appears in the calculation of the distance of two skew lines (lines not in the same plane) from each other in three-dimensional space.

The cross product can be used to calculate the normal for a triangle or polygon, an operation frequently performed in computer graphics. For example, the winding of a polygon (clockwise or anticlockwise) about a point within the polygon can be calculated by triangulating the polygon (like spoking a wheel) and summing the angles (between the spokes) using the cross product to keep track of the sign of each angle.

The cross product is used in calculating the volume of a polyhedron such as a tetrahedron or parallelepiped.

The angular momentum **L** of a particle about a given origin is defined as:

where **r** is the position vector of the particle relative to the origin, **p** is the linear momentum of the particle.

In the same way, the moment **M** of a force **F**_{B} applied at point B around point A is given as:

Since position **r**, linear momentum **p** and force **F** are all *true* vectors, both the angular momentum **L** and the moment of a force **M** are *pseudovectors* or *axial vectors*.

The cross product frequently appears in the description of rigid motions. Two points *P* and *Q* on a rigid body can be related by:

The cross product is used to describe the Lorentz force experienced by a moving electric charge *q _{e}*:

Since velocity **v**, force **F** and electric field **E** are all *true* vectors, the magnetic field **B** is a *pseudovector*.

In vector calculus, the cross product is used to define the formula for the vector operator curl.

The trick of rewriting a cross product in terms of a matrix multiplication appears frequently in epipolar and multi-view geometry, in particular when deriving matching constraints.

The cross product can be defined in terms of the exterior product. It can be generalized to an external product in other than three dimensions.^{[19]} This view^{[which?]} allows for a natural geometric interpretation of the cross product. In exterior algebra the exterior product of two vectors is a bivector. A bivector is an oriented plane element, in much the same way that a vector is an oriented line element. Given two vectors *a* and *b*, one can view the bivector *a* ∧ *b* as the oriented parallelogram spanned by *a* and *b*. The cross product is then obtained by taking the Hodge star of the bivector *a* ∧ *b*, mapping 2-vectors to vectors:

This can be thought of as the oriented multi-dimensional element "perpendicular" to the bivector. Only in three dimensions is the result an oriented one-dimensional element – a vector – whereas, for example, in four dimensions the Hodge dual of a bivector is two-dimensional – a bivector. So, only in three dimensions can a vector cross product of *a* and *b* be defined as the vector dual to the bivector *a* ∧ *b*: it is perpendicular to the bivector, with orientation dependent on the coordinate system's handedness, and has the same magnitude relative to the unit normal vector as *a* ∧ *b* has relative to the unit bivector; precisely the properties described above.

When physics laws are written as equations, it is possible to make an arbitrary choice of the coordinate system, including handedness. One should be careful to never write down an equation where the two sides do not behave equally under all transformations that need to be considered. For example, if one side of the equation is a cross product of two polar vectors, one must take into account that the result is an axial vector. Therefore, for consistency, the other side must also be an axial vector.^{[citation needed]} More generally, the result of a cross product may be either a polar vector or an axial vector, depending on the type of its operands (polar vectors or axial vectors). Namely, polar vectors and axial vectors are interrelated in the following ways under application of the cross product:

Because the cross product may also be a polar vector, it may not change direction with a mirror image transformation. This happens, according to the above relationships, if one of the operands is a polar vector and the other one is an axial vector (e.g., the cross product of two polar vectors). For instance, a vector triple product involving three polar vectors is a polar vector.

Let (**i**, **j**,**k**) be an orthonormal basis. The vectors **i**, **j** and **k** don't depend on the orientation of the space. They can even be defined in the absence of any orientation. They can not therefore be axial vectors. But if **i** and **j** are polar vectors then **k** is an axial vector for **i** × **j** = **k** or **j** × **i** = **k**. This is a paradox.

"Axial" and "polar" are *physical* qualifiers for *physical* vectors; that is, vectors which represent *physical* quantities such as the velocity or the magnetic field. The vectors **i**, **j** and **k** are mathematical vectors, neither axial nor polar. In mathematics, the cross-product of two vectors is a vector. There is no contradiction.

There are several ways to generalize the cross product to higher dimensions.

The cross product can be seen as one of the simplest Lie products, and is thus generalized by Lie algebras, which are axiomatized as binary products satisfying the axioms of multilinearity, skew-symmetry, and the Jacobi identity. Many Lie algebras exist, and their study is a major field of mathematics, called Lie theory.

The cross product can also be described in terms of quaternions.
In general, if a vector [*a*_{1}, *a*_{2}, *a*_{3}] is represented as the quaternion *a*_{1}*i* + *a*_{2}*j* + *a*_{3}*k*, the cross product of two vectors can be obtained by taking their product as quaternions and deleting the real part of the result. The real part will be the negative of the dot product of the two vectors.

A cross product for 7-dimensional vectors can be obtained in the same way by using the octonions instead of the quaternions. The nonexistence of nontrivial vector-valued cross products of two vectors in other dimensions is related to the result from Hurwitz's theorem that the only normed division algebras are the ones with dimension 1, 2, 4, and 8.

In general dimension, there is no direct analogue of the binary cross product that yields specifically a vector. There is however the exterior product, which has similar properties, except that the exterior product of two vectors is now a 2-vector instead of an ordinary vector. As mentioned above, the cross product can be interpreted as the exterior product in three dimensions by using the Hodge star operator to map 2-vectors to vectors. The Hodge dual of the exterior product yields an (*n* − 2)-vector, which is a natural generalization of the cross product in any number of dimensions.

The exterior product and dot product can be combined (through summation) to form the geometric product in geometric algebra.

As mentioned above, the cross product can be interpreted in three dimensions as the Hodge dual of the exterior product. In any finite *n* dimensions, the Hodge dual of the exterior product of *n* − 1 vectors is a vector. So, instead of a binary operation, in arbitrary finite dimensions, the cross product is generalized as the Hodge dual of the exterior product of some given *n* − 1 vectors. This generalization is called **external product**.^{[20]}

The commutator product could be generalised to arbitrary multivectors in three dimensions, which results in a multivector consisting of only elements of grades 1 (1-vectors/true vectors) and 2 (2-vectors/pseudovectors). While the commutator product of two 1-vectors is indeed the same as the exterior product and yields a 2-vector, the commutator of a 1-vector and a 2-vector yields a true vector, corresponding instead to the left and right contractions in geometric algebra. The commutator product of two 2-vectors has no corresponding equivalent product, which is why the commutator product is defined in the first place for 2-vectors. Furthermore, the commutator triple product of three 2-vectors is the same as the vector triple product of the same three pseudovectors in vector algebra. However, the commutator triple product of three 1-vectors in geometric algebra is instead the negative of the vector triple product of the same three true vectors in vector algebra.

Generalizations to higher dimensions is provided by the same commutator product of 2-vectors in higher-dimensional geometric algebras, but the 2-vectors are no longer pseudovectors. Just as the commutator product/cross product of 2-vectors in three dimensions correspond to the simplest Lie algebra, the 2-vector subalgebras of higher dimensional geometric algebra equipped with the commutator product also correspond to the Lie algebras.^{[22]} Also as in three dimensions, the commutator product could be further generalised to arbitrary multivectors.

In the context of multilinear algebra, the cross product can be seen as the (1,2)-tensor (a mixed tensor, specifically a bilinear map) obtained from the 3-dimensional volume form,^{[note 2]} a (0,3)-tensor, by raising an index.

These products are all multilinear and skew-symmetric, and can be defined in terms of the determinant and parity.

In 1773, Joseph-Louis Lagrange used the component form of both the dot and cross products in order to study the tetrahedron in three dimensions.^{[23]}^{[note 3]}

In 1843, William Rowan Hamilton introduced the quaternion product, and with it the terms *vector* and *scalar*. Given two quaternions [0, **u**] and [0, **v**], where **u** and **v** are vectors in **R**^{3}, their quaternion product can be summarized as [−**u** ⋅ **v**, **u** × **v**]. James Clerk Maxwell used Hamilton's quaternion tools to develop his famous electromagnetism equations, and for this and other reasons quaternions for a time were an essential part of physics education.

In 1844, Hermann Grassmann published a geometric algebra not tied to dimension two or three. Grassmann develops several products, including a cross product represented then by [uv].^{[24]} (*See also: exterior algebra.*)

In 1853, Augustin-Louis Cauchy, a contemporary of Grassmann, published a paper on algebraic keys which were used to solve equations and had the same multiplication properties as the cross product.^{[25]}^{[26]}

In 1878, William Kingdon Clifford published *Elements of Dynamic*, in which the term *vector product* is attested. In the book, this product of two vectors is defined to have magnitude equal to the area of the parallelogram of which they are two sides, and direction perpendicular to their plane.^{[27]} (*See also: Clifford algebra.*)