An "axiom", in classical terminology, referred to a self-evident assumption common to many branches of science. A good example would be the assertion that

When mathematicians employ the field axioms, the intentions are even more abstract. The propositions of field theory do not concern any one particular application; the mathematician now works in complete abstraction. There are many examples of fields; field theory gives correct knowledge about them all.

It is not correct to say that the axioms of field theory are "propositions that are regarded as true without proof." Rather, the field axioms are a set of constraints. If any given system of addition and multiplication satisfies these constraints, then one is in a position to instantly know a great deal of extra information about this system.

Another lesson learned in modern mathematics is to examine purported proofs carefully for hidden assumptions.

As a matter of facts, the role of axioms in mathematics and postulates in experimental sciences is different. In mathematics one neither "proves" nor "disproves" an axiom. A set of mathematical axioms gives a set of rules that fix a conceptual realm, in which the theorems logically follow. In contrast, in experimental sciences, a set of postulates shall allow deducing results that match or do not match experimental results. If postulates do not allow deducing experimental predictions, they do not set a scientific conceptual framework and have to be completed or made more accurate. If the postulates allow deducing predictions of experimental results, the comparison with experiments allows falsifying (falsified) the theory that the postulates install. A theory is considered valid as long as it has not been falsified.

This section gives examples of mathematical theories that are developed entirely from a set of non-logical axioms (axioms, henceforth). A rigorous treatment of any of these topics begins with a specification of these axioms.