Квантовый газ

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от , проверенной 21 марта 2021; проверки требуют .

Квантовый газ — газ частиц или квазичастиц, подчиняющийся квантовой статистике.

Модель квантового газа широко применяется для решения задач физики твердого тела (электронный газ в металлах), астрофизики (свойства белых карликов и нейтронных звезд), физики конденсированного состояния (сверхтекучесть).

Соответствующий этой статсумме большой термодинамический потенциал идеального квантового газа:

Можно ещё больше унифицировать выражение для термодинамического потенциала, если заметить, что подынтегральная функция в случаях Ферми- и Бозе-газа отличается только знаком. Далее следует вынести из под интеграла все размерные параметры. Тогда термодинамический потенциал запишется в виде:

Эти формулы продолжают работать и при низких, и при высоких температурах.[прояснить]

Вырожденный газ — газ, на свойства которого существенно влияют квантовомеханические эффекты, возникающие вследствие тождественности его частиц. Влияние тождественности частиц становится существенным при уменьшении средних расстояний между ними до расстояний, соизмеримых с длиной волны де Бройля, ассоциированной с частицей, то есть выполняется условие:

Зависимость давления вырожденного ферми-газа от температуры, сохранению состояния вырождения соответствует горизонтальная ветвь.

Свойства Бозе- и Ферми-газа принципиально различны: сколь угодно большое количество бозонов может находиться в одном квантовом состоянии, в то время как на одном квантовом состоянии может находиться не более одного фермиона.

Тип вырождения зависит от статистики, которой подчиняются частицы. Если для Ферми-газа вследствие действия принципа Паули давление вырожденного газа выше давления идеального газа в тех же условиях, то для вырожденного Бозе-газа давление ниже давления идеального газа вследствие конденсации Бозе — Эйнштейна.

При вырождении газа бозонов из частиц с отличной от нуля массой (такими бозонами могут быть атомы и молекулы) некоторая доля частиц системы должна переходить в состояние с нулевым импульсом; это явление называется Бозе — Эйнштейновской конденсацией. Чем ближе температура к абсолютному нулю, тем больше частиц должно оказаться в этом состоянии. Однако, системы таких частиц при понижении температуры до очень низких значений переходят в твёрдое или жидкое (для гелия) состояния, к которым неприменимо приближение идеального газа.

Для газа из бозонов нулевой массы, к которым относятся фотоны, температура вырождения равна бесконечности; поэтому фотонный газ всегда вырожденный, и классическая статистика к нему не применима. Фотонный газ является единственным вырожденным идеальным бозе-газом стабильных частиц. Однако Бозе-Эйнштейновской конденсации в нём не происходит, так как не существует фотонов с нулевым импульсом (фотоны всегда движутся со скоростью света).

Важным примером Ферми-газа при достаточно низких температурах является электронный газ в металлах. Для этого газа температура вырождения оказывается порядка 10 000 К, следовательно, в металлах при комнатной температуре приближение вырожденного электронного газа работает хорошо. Стоит отметить, что в случае полупроводников данная модель переходит в модель Максвелла-Больцмана, благодаря расположению уровня Ферми внутри запрещенной зоны.

Явление вырождения Ферми-газов играет важную роль в эволюции звёзд: так, давление электронного вырожденного газа уравновешивает тяготение в белых карликах, а давление нейтронного вырожденного газа уравновешивает тяготение в нейтронных звёздах.

Решая первое уравнение методом итераций находим выражение для химического потенциала и энергии Ферми:

Необходимо отметить, что приближение идеального газа не описывает множество важных эффектов, таких как явление сверхпроводимости, сверхтекучести и т. д.