Действие (физическая величина)

Действие в физике — скалярная физическая величина, являющаяся мерой движения физической системы. Действие является математическим функционалом, который берёт в качестве аргумента траекторию движения физической системы и возвращает в качестве результата вещественное число.

Действие — одна из фундаментальных физических величин, входящая в современную формулировку большинства основных физических теорий во всех фундаментальных разделах физики, имеющая при этом и огромное значение в теоретической физике. Оно может иметь меньшее значение в сравнительно более прикладных областях, хотя и там нередко бывает употребительно. Используется равно и в квантовой, и в классической, и в релятивистской физике.

В классической механике принцип наименьшего действия постулирует, что физическая система всегда следует траектории с наименьшим действием.

В квантовой механике, в формулировке теории через интегралы по траекториям, физическая система одновременно следует всем возможным траекториям, причём амплитуда вероятности следования определённой траектории определяется действием этой траектории. Если характерное действие намного больше постоянной Планка, то амплитуда классической траектории с наименьшим действием является преобладающей — таким образом квантовая механика переходит в классическую.

Если для какой-то системы написано действие, то это в принципе определяет и её классическое поведение (то есть поведение системы в классическом приближении), и её квантовое поведение. Первое — через принцип стационарного (наименьшего) действия, второе — через фейнмановский интеграл по траекториям. При этом само действие записывается одинаково, в одной и той же форме, и для классического и для квантового случая, что делает его очень удобным инструментом (для квантования через фейнмановский интеграл в принципе надо знать только действие, определённое для обычных классических траекторий, то есть записанное так же, как и для классического применения).

Исторически терминология довольно сильно колебалась, но в настоящее время принято называть действием величину

где обозначения совпадают с использованными выше, а выражение в последнем интеграле — скалярное произведение векторов импульса и скорости, которое в случае одной частицы можно рассматривать в обычном ньютоновском смысле.

Для распределённых систем (например, для полей или упругих сплошных сред) действие обычно может быть записано так:

Мопертюи в работах 1740(?), 17411746 гг. впервые сформулировал принцип наименьшего действия для механики и высказал мысль о том, что это универсальный закон природы, проинтерпретировав и оптику (принцип Ферма) в терминах действия (он использовал то, что сейчас принято называть укороченным действием). Мопертюи был склонен к теологической интерпретации этого принципа, свидетельствовавшего, по его мнению, об определённом совершенстве сотворённого Богом мира.

Ещё при жизни Мопертюи эти его работы были поддержаны и развиты Эйлером, к тому же разработавшим вариационное исчисление, позволявшее наиболее эффективно реализовать преимущества принципа.

Затем Лагранж (в «Аналитической механике» («Mécanique analytique»), опубликованной в 1788 г.) развил применение принципа наименьшего действия в механике, использовав вариационное исчисление и введя обобщённые координаты. Также он изложил в 1795 г. метод неопределенных множителей, позволяющий значительно улучшить использование принципа наименьшего действия в задачах со связями.

Действие для быстро движущейся («релятивистской») частицы было исправлено (по сравнению со старым ньютоново—лагранжевым вариантом, область применимости которого — движения, медленные по сравнению со скоростью света) в начале XX века, впервые это сделано явно, по-видимому, Планком в 1907 году[1], также в связи с этим можно упомянуть работы Минковского (1907) и Борна (1909)[2]. Оно приняло для свободной точечной частицы вид интервала (длины — собственного времени — в пространстве-времени Минковского) вдоль мировой линии (пространственно-временной траектории) частицы с обратным знаком, заменив обычное ньютоновское выражение в механике быстрых частиц. Поэтому принцип наименьшего действия для релятивистских частиц приводит к максимально возможному собственному времени вдоль траектории.

В 1915 Гильберт, использовав вариационный метод по отношению к действию Эйнштейна — Гильберта (англ.), получил верные уравнения гравитационного поля в общей теории относительности. При этом, пожалуй, впервые было в такой полноте использовано преимущество простоты подхода, исходящего из написания из общих соображений скалярного (инвариантного) действия (явный вид которого заранее не известен), а затем — получения уравнений движения для поля (уравнений поля) варьированием этого функционала.

В начале XX века Планк, Бор, Зоммерфельд, Шварцшильд и другие использовали действие (обычно укороченное действие) для ранней формулировки квантовой теории, являющейся с современной точки зрения неким вариантом квазиклассического приближения, оказавшейся довольно хорошо подходящей для описания таких ключевых задач, как гармонический осциллятор и атом с круговыми и эллиптическими орбитами электрона (по крайней мере, это касается простейшего случая — атома водорода). Правило квантования, широко использовавшееся на данном этапе развития квантовой теории, сводилось к квантованию укороченного действия на замкнутых орбитах в соответствии с условием

Луи де Бройль (19231924 гг.) использовал такой формализм для формулировки своих утверждений о волновой природе электрона и вообще материальных частиц.

Заметную роль в обосновании современной формы квантовой механики (в смысле выяснения её соотношения с классической) сыграло имеющее дело с действием как функцией координат и времени уравнение Гамильтона — Якоби, уже имеющее форму, близкую к форме основного уравнения квантовой механики — уравнения Шрёдингера — и являющегося при этом по сути его классическим пределом.

Начиная со второй половины XX века был изобретен ряд обобщений действия для точечной частицы, например, в области теории струн — действие Намбу — Гото (англ.) (действие-площадь) и действие Полякова (англ.).

В заключение следует сказать, что в современных абстрактных областях теоретической физики действие является одним из основных инструментов формулировки конкретной теории уже с начального этапа. Например, один из очень распространенных способов формулировки новой теории сводится к тому, что для исследуемой системы в первую очередь стараются написать действие, ограничивая возможные варианты наложением условий симметрии, и часто — ещё соображениями простоты.

Действие в классической механике записывается в двух формах, в конечном итоге эквивалентных:

Проводя вывод уравнений движения с подходящим выбором координат (вообще говоря, не декартовых) и с использованием метода неопределенных множителей Лагранжа, нетрудно получить в удобном виде и уравнения движения для систем со связями, иногда исключая из них реакции связей (что может заметно упрощать уравнения).

Следует заметить, что при всей фундаментальной значимости концепция действия не покрывает некоторых случаев макроскопической механики; например, не позволяет написать действие в случае наличия произвольных диссипативных сил, и соответственно не позволяет воспользоваться для их описания принципом наименьшего действия.

Для механических распределённых систем (например, для упругих сплошных сред) действие обычно может быть записано так:

Для немеханических распределенных систем подобная запись возможна на базе аналогии с механическими. В частности, сходный способ работает для фундаментальных полей, формально также подходящих под определение распределённых систем (хотя можно считать и это лишь аналогией, вопрос того или иного выбора здесь — в сущности терминологический). Подробно фундаментальные физические поля рассмотрены в отдельном параграфе, хотя обычные распределённые системы, механические в особенности, дают в общем достаточно хорошие модели, способствующие пониманию построения динамики этих полей и, в частности, вопросов, связанных с действием.

Действие в классической теории поля используется для получения уравнений поля (как свободных, так и с источниками) из принципа стационарного (наименьшего) действия (варьированием по полевым переменным). Также оно используется для получения уравнений движения частиц при взаимодействии с данным полем, также через принцип стационарного (наименьшего) действия, но варьированием уже по координатам (а в гамильтоновом варианте — и по импульсам) частиц.

Сам вид действия для поля (применяемого как в классическом, так и в квантовом смысле) в общем очень похож на вид действия для распределённых систем (в частности, для механических распределённых систем, таких, как струна, мембрана и т. п.). Это позволяет установить иногда прямую, иногда условную, аналогию между тем и другим случаем, хотя в деталях то и другое может заметно различаться (так что прямая механическая аналогия возможна не всегда, а иногда её просто оказывается не слишком легко построить и использовать).

Чаще всего (в случае линейных полей или изучения их в линейном приближении) действие имеет достаточно простой вид и распадается на три члена:

Среди фундаментальных физических полей скалярные поля, хотя и присутствуют в теории, но пока само их существование носит в значительной мере гипотетический характер, а свойства, соответственно, достаточно плохо известны. Однако это самый простой случай; к тому же кроме фундаментальных полей представляют интерес такие макроскопические поля, как, например, поле давления газа в акустике, которое в случае малых (и гладких) отклонений от равновесия может быть в известном смысле прямо уподоблено абстрактному скалярному полю.

Если же движение частиц медленное по сравнению со скоростью света и достаточно ньютоновского приближения, то можно взять соответствующее приближённое действие, обычное для классической механики:

где правая часть совпадает с обычной силой Лоренца, которая может быть также записана (а при желании и получена явно) и в трёхмерном виде; то есть, в трёхмерном виде уравнение движения будет таким:

Действие для электромагнитного поля (и его член для свободного поля, и член, описывающий взаимодействие с токами) с самого начала лоренц-инвариантно (точнее, является 4-скаляром). То же можно сказать о действии для всех фундаментальных полей, известных в современных теориях (говоря несколько точнее — в общепризнанных теориях, прошедших экспериментальную проверку).

Однако действие классической (ньютоновской) механики, не важно, в какой форме оно записано, гамильтоновой или лагранжевой, не обладает свойством лоренц-инвариантности. Исторически в определённый момент (на грани XIX и XX веков) возникла необходимость привести механику в соответствие с принципом относительности, а значит, сделать её лоренц-ковариантной. Простейший путь для этого — написать для частицы («материальной точки») такое действие, которое бы было лоренц-инвариантным, а затем обычной процедурой варьирования получить из него уравнение движения, которое будет уже лоренц-ковариантным (приближённо, при медленных движений, такая механика должна совпадать с ньютоновской, так как та хорошо проверена для малых скоростей).

Простейшее действие для свободной частицы, которое можно предложить, исходя из геометрии Минковского, — это величина, с точностью до постоянного множителя совпадающая с длиной мировой линии данной частицы (а соображения размерности определят коэффициент):

Поэтому здесь ограничимся тем, что приведем действие, соответствующее основной (неквантовой) теории гравитации современной физики — общей теории относительности. Это действие Эйнштейна — Гильберта:

(именно таким образом их получил впервые в 1915 году Гильберт, Эйнштейн шёл другим путём).

Вполне удовлетворительной квантовой теории гравитации, насколько известно, в настоящее время (2009 год) не существует. Однако многие из теорий, которые с большим или меньшим основанием могут претендовать на эту роль, дают обычно эффективное действие Эйнштейна — Гильберта в низкоэнергетическом пределе.

Для фермионных (в частности, для спинорных) полей можно не только написать действие, но и получить формально классические уравнения для этих полей, варьируя такое действие. Однако в отличие от бозонных, фермионные поля наблюдаемы в их классическом виде хуже, так как принцип Паули запрещает более чем одному фермиону находиться в одном состоянии, что разрешено для бозонов и позволяет им, находясь в одинаковом квантовом состоянии в большом количестве, наблюдаться как обычное классическое поле, например, электромагнитное. Но при этом есть теорема, утверждающая (по крайней мере в рамках применимости теории возмущений), что результат вторичного квантования для таких фермионных полей совпадает с интерпретацией таких «классических» полей как волновых функций фермионов в смысле первичного квантования.

Таким образом, например, полученное с помощью принципа стационарного действия из той или иной формы записи действия для частицы со спином 1/2 уравнение Дирака имеет прямое отношение к квантовому описанию такого фермиона (например, электрона).

У уравнения Дирака есть свойство, представляющее определённую трудность для получения его из действия с квадратичным лагранжианом (да и каким-либо иным, если пользоваться обычными правилами варьирования и считать компоненты спиноров обычными числами). Это свойство — первый порядок производных в уравнении Дирака.

Из положения иногда выходят, просто введя искусственные формальные модификации ограничения на правила варьирования или действия операторов производных.

Более систематический, по-видимому, подход заключается в том, что фермионные поля (спиноры и их компоненты) считаются грассмановыми (англ.), то есть антикоммутирующими числами, что меняет знак членов с производными первого и второго порядка по сравнению с обычным, из-за чего члены второго порядка при варьировании уничтожаются, а первого остаются.

Фейнмановский интеграл по траекториям применим к квантовому описанию как точечных частиц в обычном пространстве, так и полей (как распределенных систем) в конфигурационном пространстве (и эта применимость к обоим случаям в принципе неудивительна, поскольку формальное отличие между точечной частицей и многомерной, даже бесконечномерной, динамической системой — лишь в размерности конфигурационного пространства, что в целом хорошо понятно уже в рамках классической механики).

В квантовой теории поля применяется интегрирование как по траекториям частиц в обычном пространстве (точнее, в пространстве-времени), которое обычно называют в этом случае первичным квантованием, так и по траекториям в пространстве полевых переменных, что называется вторичным квантованием. Тот и другой способ, насколько известно, дает эквивалентные результаты в рамках теории возмущений.

Фейнмановский интеграл по траекториям — один из наиболее популярных у современных физиков-теоретиков способов квантования (построения квантовой теории). Одновременно это один из наиболее прямых способов сопоставления квантовой картины с классической, что является одним из серьёзных его психологических преимуществ, так как каждая траектория в нём в принципе воспринимается как классическая, а действие вычисляется в точности по классическому рецепту, что в ряде случаев и аспектов делает теорию заметно более обозримой и легко понимаемой, чем другие подходы. В числе прочего это свойство удобно для осуществления предельного перехода к классике (см. ниже), и переход к ней исходя из интеграла по траекториям является в этом смысле одним из наиболее стандартных путей в современной физике. То же относится и к достаточному удобству получения таким путём квазиклассического приближения (также см. ниже).

В ряде случаев (весьма ограниченном — когда действие квадратично по координатам или полевым переменным и их производным, и интеграл сводится к многомерному гауссову с предельным переходом к бесконечномерному случаю) фейнмановский интеграл по траекториям может быть вычислен явно и точно. Практикуется его расчёт численными методами. Во многих случаях этот интеграл полезен в различных преобразованиях и прочих теоретических расчётах.

Нетрудно установить эквивалентность подхода интегрирования по траекториям уравнению Шрёдингера, по крайней мере при тривиальной топологической ситуации.

Для свободных (не взаимодействующих друг с другом) полей на пустом плоском пространстве интегрирование по траекториям позволяет часто получить в явном виде пропагатор, который оказывается совпадающим с пропагатором, получаемым из дифференциального уравнения для соответствующего поля (например, из волнового уравнения для безмассового скалярного поля). При этом оказывается, что для взаимодействующих полей интеграл по траекториям является, пожалуй, наиболее естественным (и популярным среди современных теоретиков) способом обоснования техники диаграмм Фейнмана. Дело в том, что интеграл по траекториям для системы взаимодействующих частиц (полей) легко разбивается на части, где взаимодействия нет (а результат, как мы говорили чуть выше, для этого случая известен — это пропагатор, соответствующий поведению свободного поля, который может быть довольно легко вычислен любым способом), дополненные точечным взаимодействием, которое уже сводится к обычному конечномерному интегрированию — в соответствии с правилами Фейнмана.

Однако квантование с помощью интеграла по траекториям не ограничено теорией возмущений (диаграммами Фейнмана). Этот способ находит и более нетривиальные применения, как в теоретической физике, так и в некоторых областях чистой математики.[4][5][6]

В квантовой механике тот факт, что поведение квантовомеханической системы стремится к классической физике в пределе больших действий (больших квантовых чисел), называется принципом соответствия. Этот принцип ввёл Нильс Бор в 1923 году.

Правила квантовой механики очень успешно применяются в описании микроскопических объектов, типа атомов и элементарных частиц. С другой стороны, эксперименты показывают, что разнообразные макроскопические системы (пружина, конденсатор и т. д.) можно достаточно точно описать в соответствии с классическими теориями, используя классическую механику и классическую электродинамику (хотя существуют макроскопические системы, демонстрирующие квантовое поведение, например, сверхтекучий жидкий гелий или сверхпроводники). Однако, весьма разумно полагать, что окончательные законы физики должны быть независимыми от размера описываемых физических объектов. Это предпосылка для принципа соответствия Бора, который утверждает, что классическая физика должна появиться как приближение к квантовой физике, поскольку системы становятся большими.

Принцип соответствия — один из инструментов, доступных физикам для того, чтобы выбрать соответствующую действительности квантовую теорию. Принципы квантовой механики довольно широки — например, они заявляют, что состояния физической системы занимают Гильбертово пространство, но не говорят, какое именно. Принцип соответствия ограничивает выбор теми пространствами, которые воспроизводят классическую механику в классическом пределе.