Функция (математика)

Фу́нкция (отображе́ние, опера́тор, преобразова́ние) — в математике соответствие между элементами двух множеств, установленное по такому правилу, что каждому элементу первого множества соответствует один и только один элемент второго множества.

Аналогично, задуманный заранее алгоритм по значению входного данного выдаёт значение выходного данного.

Часто под термином «функция» понимается числовая функция, то есть функция, которая ставит одни числа в соответствие другим. Эти функции удобно представлять в виде графиков.

Термин «функция» (в некотором более узком смысле) был впервые использован Лейбницем (1692 год). В свою очередь, Иоганн Бернулли в письме к тому же Лейбницу употребил этот термин в смысле, более близком к современному[1][2].

Первоначально понятие функции было неотличимо от понятия аналитического представления. Впоследствии появилось определение функции, данное Эйлером (1751 год), затем — у Лакруа (1806 год), — уже практически в современном виде. Наконец, общее определение функции (в современной форме, но для числовых функций) было дано Лобачевским (1834 год) и Дирихле (1837 год)[3].

К концу XIX века понятие функции переросло рамки числовых систем. Сначала понятие функции было распространено на векторные функции, вскоре Фреге ввёл логические функции (1879), а после появления теории множеств Дедекинд (1887) и Пеано (1911) сформулировали современное универсальное определение[2].

Наиболее строгим является теоретико-множественное определение функции (на основе понятия бинарного отношения). Часто вместо определения функции даётся понятие функции, то есть описание математического объекта с помощью понятий обычного языка, таких как «закон», «правило» или «соответствие».

Заметим, что в формулировке понятия функции требование соответствия "по правилу" является повтором, поскольку оно содержится в понятии однозначного соответствия. Формулировка понятия функции без понятия правило и необходимости его обозначать:

Для числовых функций, часто задаваемых формулами, понятие функции формулируется как соответствие между элементами множеств посредством правила. Правило не обозначается, чтобы избежать совпадения обозначений правила и функции:

Понятие множества упорядоченных пар (отношения) позволяет исключить из формулировки понятия функции не только понятие правило, но и понятие соответствие, к которому сводится понятие функции в обычных формулировках предыдущего подраздела.

Таким образом, для функции можно сформулировать определение, использующее только начальные математические понятия:

Более общим, включающим в себя не только однозначные функции, является следующее определение функции:

Для функций трёх и более аргументов такое графическое представление не применимо. Однако, и для таких функций можно придумать наглядное полугеометрическое представление (например каждому значению четвёртой координаты точки сопоставить некоторый цвет на графике).

Отображения, у которых совпадают область задания и область значений, называются отображениями заданного множества в себя или преобразованиями.

Последние два свойства допускают обобщение на любое количество множеств.

Если отображение обратимо (см. ниже), прообраз каждой точки области значений одноточечный, поэтому для обратимых отображений выполняется следующее усиленное свойство для пересечений:

Если функция является и сюръективной, и инъективной, то такую функцию называют биективной или взаимно однозначной.

В зависимости от того, какова природа области задания и области значений, различают следующие случаи областей:

В случае 1 рассматриваются отображения в самом общем виде и решаются наиболее общие вопросы. Таким общим вопросом, например, является вопрос о сравнении множеств по мощности: если между двумя множествами существует взаимно однозначное отображение (биекция), то два данных множества называют эквивалентными или равномощными. Это позволяет провести классификацию множеств в виде единой шкалы, начальный фрагмент выглядит следующим образом:

В соответствии с этим, имеет смысл рассматривать следующие примеры отображений:

В случае 2, основной объект рассмотрения — заданная на множестве структура (дополнительные свойства элементов множества) и то, что происходит с этой структурой при отображении: если при взаимно однозначном отображении сохраняются свойства заданной структуры, то говорят, что между двумя структурами установлен изоморфизм. Таким образом, изоморфные структуры, заданные в различных множествах, невозможно различить, поэтому в математике принято говорить, что данная структура рассматривается «с точностью до изоморфизма».

Существует большое разнообразие структур, которые могут быть заданы на множествах. Сюда относится:

Функции с конкретным свойством могут не существовать на множествах, не обладающих соответствующей структурой. Например, формулировка свойства непрерывности функции, заданной на множестве, требует задания на этом множестве топологической структуры.

В силу определения функции, заданному значению аргумента соответствует ровно одно значение функции. Несмотря на это, нередко можно услышать про так называемые многозначные функции. В действительности, это не более чем удобное обозначение функции, область значений которой сама является семейством множеств.

Функция однозначна, если каждому значению аргумента соответствует единственное значение функции. Функция многозначна, если хотя бы одному значению аргумента соответствует два или более значений функции[7].